
Anticipatory Search as Partial Satisfaction Planning with State Dependent Costs

Daniel Borrajo and Raquel Fuentetaja and Tomás de la Rosa
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. 28911 Leganes (Madrid). Spain
dborrajo@ia.uc3m.es, rfuentet@inf.uc3m.es, trosa@inf.uc3m.es

Abstract
In the context of deliberative reasoning, au-
tonomous systems should be able to explicitly rea-
son about goals. Most works in automated planning
assume that goals are initially given and fixed and
planners generate plans to achieve them. However,
in some real-world scenarios where planners work
on an on-line continual planning setting, additional
goals may arrive over time. When some informa-
tion about future goal arrivals is known, it can be
exploited to direct the system towards those goals
even though they have not arrived yet. Recent work
in systems that exhibit such anticipatory behavior
has proposed to use sampling techniques in the con-
text of a Markov Decision Process (MDP). In this
paper, we tackle this problem from the point of
view of domain-independent planning and propose
three alternative approaches. Experimental results
in several benchmark domains suggest that these
approaches allow the system to exhibit a more effi-
cient and effective anticipatory behavior.

1 Introduction
Most works on automated planning assume goals are given,
do not change, and planners should only reason on the cur-
rent given goals. However, autonomous systems dealing with
most real world scenarios will face planning tasks where
goals do arrive over time. For instance, in satellites or rovers
domains, new requests to take images/obtain samples ap-
pear over time. In logistics domains, new packages should
be transported elsewhere, and in elevators domains new pas-
sengers appear over time. Most planning approaches deal
with dynamic goals by integrating planning with an execu-
tion module, and let the execution module force a replanning
when new goals arrive [Ruml et al., 2011].

In this paper we focus on planning problems with deter-
ministic worlds but non-deterministic goals, as the work in-
troduced recently by Burns et al. in the context of On-line
Continual Planning Problems (OCPPs) [Burns et al., 2012].
Other works have addressed the task of non-deterministic
worlds, but fixed goals [Kiesel et al., 2013]. Burns et al. ap-
proach explicitly exploits information about future goal ar-
rivals with the purpose of building plans that anticipate the

future. They select the next action to apply by a variant of
hindsight optimization [Chong et al., 2000; Yoon et al., 2008;
2010], that provides a reduction from an stochastic planning
problem to a deterministic one based on sampling. This strat-
egy requires solving several planning tasks at every time-step.

The aim of the present paper is to solve OCPPs efficiently
in a domain-independent way. To be able of defining the dif-
ferent approaches adequately, we first contribute with the def-
inition of a type of planning tasks called Partial Satisfac-
tion Planning with Horizon and State-Dependent costs (PSP-
HSD). In PSP-HSD tasks there is a finite planning horizon,
the goals are soft and the cost function is state-dependent.
PSP-HSD tasks allow us to characterize Burns et al. approach
for domain-independent planning. As a second contribution
of the paper, we define three alternative and more efficient
problem solving strategies than that of Burns et al.. They are
also expressed in terms of PSP-HSD tasks that incorporate
probabilistic information about goal arrivals in the cost func-
tion.

In order to solve OCPPs by means of PSP-HSD tasks in
practice, and as a third contribution, we propose a compi-
lation of these tasks into numerical planning. The compila-
tion is based on the compilation proposed by Keyder and
Geffner [2009] to deal with soft goals in classical planning;
and on the one proposed by Benton et al. [2012] to deal with
state dependent costs.

2 Problem Description
The problem we tackle in this paper is an On-line Contin-
ual Planning Problem (OCPP) in a deterministic world with
uncertainty about future goals, where the goal arrival distri-
bution is known. This problem has been defined before as a
Markov Decision Process (MDP) [Burns et al., 2012].

Definition 1 Online Continual Planning Problem (OCPP)
An OCPP is a MDP defined by tuple 〈S,A, T,C〉, where S is
a set of states. Each state s ∈ S is defined by a pair (w,G) ∈
W×G that combines a world statew ∈W and a set of known
goals G ⊆ G. G is the set of all possible goals. A is a set of
actions. T is the transition function, T : S × A× S → [0, 1]
that defines the probability of transitioning from a state s ∈ S
to a state s′ ∈ S by applying an action a ∈ A. C is a cost
function, C : S × A × S → R+

0 , that defines the cost of
applying an action a in a state s obtaining a state s′.

In OCPP, the number of possible states in S is |W | × 2|G|.
An action a is applicable in a state s = (w,G) if it is applica-
ble in w. We will denote the set of applicable actions asA(s).
To avoid dead-ends we assume the existence of a no-op ac-
tion, applicable in all states, that preserves the world state.
This MDP differs from the classical one [Puterman, 1994] in
that the current goals are part of the current state and goal
achievement is measured by a cost function.

In this paper, we make the same assumptions as in [Burns
et al., 2012]. We assume actions are deterministic on world
states and the only uncertainty comes from future goals. We
also assume that future goals are independent of world states
and actions, and among them. Even making these assump-
tions the task is a difficult one. Also, these assumptions apply
in a wide range of domains, as the ones we will use in our
experiments. Finally, we assume that once a goal has arrived
it remains in the list of known goals, i.e. new goals are just
added to the previous ones.

The transition function, T (s, a, s′), where s = (w,G) and
s′ = (w′, G′), is zero when a is not applicable in s. Oth-
erwise, and given the previous assumptions, T (s, a, s′) =
P (G′ | G), i.e. the probability of having a new set of goals
G′ in s′ given that the set of goals in s was G, defined as:

P (G′|G)=

0 if G*G′

1 if G=G′=G[∏
g∈G′−G

P (g)
]
×
[∏
g∈G−G′

(1− P (g))
]

otherwise

(1)

The probability is zero when G * G′, given that goals do
not disappear once they have arrived; and it is one when G
and G′ are both the set of all possible goals, i.e. all possible
goals have already arrived. Otherwise, the first product is the
probability that the set of new goals (G′ − G) arrives in s′,
and the second product is the probability that the remaining
possible goals (that are not in G′) do not arrive in s′. P (g)
is the input goal arrival distribution defining the probability
that a new goal g arrives at a given time-step. Each P (g) is a
Bernoulli process, i.e. probabilities are independent and iden-
tically distributed for all time-steps. So, given P (g) for each
goal g, we can completely define T (s, a, s′).

We use a cost function for the OCPP (Definition 1) based
on Burns et al. work. Specifically, an instantaneous penalty
kg ∈ R+ is paid at every time-step for every unachieved goal
g that has already arrived. The idea of these penalties is to
promote the prompt achievement of goals. We consider the
penalty is paid after the execution of actions and with respect
to the goals in the next state. Thus, the cost does not depend
on the source state s. We define the following cost function:

C(a, s′) = C(a, (w′, G′)) = cost(a)+penalty(w′, G′) (2)

where cost(a) ∈ R+
0 is the action cost. The penalty for a set

of goals G′ in a given state w′ is defined as the sum of the
penalties of its individual goals. Then:

penalty(w′, G′) =
∑
g′∈G′

penalty(w′, g′) (3)

and penalty(w′, g′) =

ß
kg′ if g′ 6∈ w′
0 otherwise

Action-value and Value Functions
Given an OCPP, action selection at every time-step is a deci-
sion problem that can be posed as minimizing the cost of a
solution over a finite horizon H ≥ 0 starting from the current
state. As the world is deterministic, the selected action should
minimize the sum of the costs over the expected goal sets.

Given a state s and an applicable action a, the optimal
action-value function for horizon H , Q∗(s, a,H), provides
the minimum expected cost at horizon H for the state s when
a is applied. Thus, the optimal value function, V ∗(s,H), that
provides the minimum expected cost at horizon H for state
s [Bellman and Kalaba, 1965], is computed as:

V ∗(s,H) = min
a∈A(s)

Q∗(s, a,H) (4)

The Equation 5 in Figure 1 definesQ∗(s, a,H) in the general
case and the Equation 6 also in Figure 1 defines its instan-
tiation to our problem. This instantiated equation considers
that the part of the cost function involving the action cost is
independent of the next state (Equation 2), and that the transi-
tion function for a ∈ A(s) expresses P (G′ | G) (Equation 1)
which is independent of the world states and actions. The op-
timal policy is: π∗(s,H) = argmin

a∈A(s)

Q∗(s, a,H).

Finding this optimal policy is very costly due to the num-
ber of possible goal sets at every time-step and to the usual
huge number of actions and world states. Therefore, it is
not viable in practice, as was shown by Burns et al. 2012.
In this paper we study more efficient action selection ap-
proaches that estimate the optimal value function and are
based on computing minimal cost plans, as the one proposed
by Burns et al. They evaluated their solution using domain-
specific solvers. Our aim is to solve OCPPs efficiently and
in a domain-independent way. Thus, we adapt their idea to
domain-independent planning and propose additional alter-
native approaches. With this purpose we introduce first PSP-
HSP planning tasks.

3 PSP-HSP Planning Tasks
Classical planners fail when they cannot achieve all goals,
even when a subset of them could be achieved. This is a strong
constraint for the design of alternative solutions to the OCPP
involving a minimization horizon, since it would involve pay-
ing unnecessary penalties. The existence of a horizon fur-
ther restricts the problem. Partial Satisfaction Planning (PSP)
models can handle the so-called soft goals that are goals that
are not strictly necessary to achieve. Therefore, PSP appar-
ently seems more adequate than classical planning for solving
OCPP tasks. Also, the planning model to be used requires to
deal with instantaneous penalties paid for unachieved goals.
Thus, the cost function should be state-dependent, since the
cost depends on the unachieved goals, which depend on the
state.

Definition 2 A Partial Satisfaction Planning task with
Horizon and State-Dependent costs (PSP-HSD) is defined
by a tuple Π = (F ,A, I, SG, C, H); where F is a finite set
of fluents;A is a finite set of actions, each a ∈ A is defined by
its preconditions, pre(a) ⊆ F , positive and negative effects,

Q∗(s, a,H) =

®
0 if H = 0∑
s′
T (s, a, s′)

[
C(s, a, s′) + V ∗(s′, H − 1)

]
otherwise (5)

Q∗(s, a,H) =

{
0 if H = 0
cost(a) +

∑
s′=(w′,G′)

P (G′ | G)
[
penalty(w′, G′) + V ∗(s′, H − 1)

]
otherwise (6)

Figure 1: Generic (Equation 5) and instantiated (Equation 6) optimal action-value function for actions a that are applicable in
s. States s′ = (w′, G′) are possible next states when a is applied to s = (w,G); w′ is the result of applying a to w.

add(a), del(a) ⊆ F . I ⊆ F is the initial state and SG ⊆ F
is a set of soft goals. The states w ∈ W are collections of
fluents from F . C : A ×W → R+

0 is a state-dependent ac-
tion cost function, that is computed based on the soft goals,
C(a,w) = fSG(a,w). H ∈ N0 represents a finite horizon.

An action sequence π is a plan for a PSP-HSD task Π if it is
applicable in I and |π| = H .1 Let π = a1, . . . , aH be a plan
that generates the sequence of states w1, . . . , wH when ap-
plied to I. The cost of π is defined as c(π) =

∑H
i=1 C(ai, wi).

Optimal plans are those that minimize c(π). PSP-HSP tasks
are decidable by definition for H <∞, since the set of states
reachable from the initial state is finite, and the reachable part
of the state transition graph can be explicitly constructed.

4 Alternative Action Selection Approaches
In this section, we present different approaches whose action
selection mechanisms are based on estimations of the value
function [Bellman and Kalaba, 1965]. The first one is based
on hindsight optimization [Burns et al., 2012], but adapted to
domain-independent planning. The others are contributions
of this paper.

4.1 Hindsight Optimization (HO)
The approach proposed by Burns et al. [2012] was based on
previous work on hindsight optimization [Chong et al., 2000;
Yoon et al., 2008; 2010]. The idea is to approximate the op-
timal action-value function by the expected value of mini-
mum cost plans. Since the only uncertainty comes from the
future goals, this expected value is the average of the optimal
plan cost for width samples {F 1, . . . , Fwidth}, F i ⊆ G \ G
over the distribution of possible goal arrivals for the upcom-
ing time-steps (the difference between the set of all goals and
the already known goals, G \G). Each sample fixes a possible
future in terms of goals.

More formally, if the current state is s0 = (w0, G0), the
selected action at s0 will be the applicable action a ∈ A(s0)

that minimizes Q̂HO(s0, a,H), an estimation of the action-
value function:

a = argmin
a∈A(w0)

Q̂HO(s0, a,H)

Q̂HO(s0, a,H) is computed as the sum of the cost of a plus
the average cost of width minimal cost plans generated from
the next state, one for each sampled future subset of goals

1Note that we assume the existence of a no-op action.

F i. Then, given F i, this next state is si1 = (w1, G0 ∪ F i),
where w1 is the resulting world state when a is applied to
w0, and the goals are the result of adding F i to the set of
goals G0 at s0. Each of these planning tasks is now fully
deterministic and can be expressed as the PSP-HSD task
Πi

HO(si1, H−1) = (F ,A, w1, G0∪F i, CiHO, H−1), whereF
is a set of fluents that define the OCPP world states W ;A are
the OCPP actions, defined in terms of their preconditions and
effects on the world states; w1 is the initial state; and G ∪ F i

is the set of soft goals. The cost function CiHO(a,w′) is com-
puted by Equation 2 (cost function for the OCPP), but taking
as arguments a and a state s′ composed as s′ = (w′, G0∪F i).

Formally, for every current OCPP state s0 and applica-
ble action a ∈ A(s0), Q̂HO(s0, a,H) is defined as shown in
Equation 6 (in Figure 2). Thus, the optimal value function for
s0 in HO is estimated as:

V̂HO(s0, H) = min
a∈A(s0)

Q̂HO(s0, a,H)

At each time-step, the number of planning processes executed
to solve the action decision problem is width × |A(s0)|. And
the total number of calls to the planner in a time period of
length H is:

∑
si
width × |A(si)|, where si are the states at

each time point between s0 and the state at H − 1.

4.2 Goal-Distribution-Sensitive Planning
Given that HO requires solving many planning tasks at
each decision-making step, we propose Goal-Distribution-
Sensitive Planning (GDS) to reduce the number of planning
processes executed at each time-step. Instead of using sam-
pling, the intuition behind GDS is to approximate the value
function by the cost of a unique plan with minimum cost, ob-
tained from a planning task that is sensitive to the goal arrival
distribution.

Since each goal arrival distribution P (g) is a Bernoulli pro-
cess, the random variableNg representing the number of steps
until goal arrival follows a geometric distribution with mean
E(Ng) = 1

P (g) . Ideally, the penalty will be minimal if each
goal is achieved before E(Ng) steps. On average, goals for
which E(Ng) is smaller will start to pay penalty before if
they are not achieved. Then, we anticipate the penalty in plan-
ning time by distributing it between the expected steps until
goal arrival. At each of these steps, if a goal g has not been
achieved, the penalty will be kg

1/P (g) = kg × P (g). This al-
lows us to define a cost function that is aware of the goal
arrival distribution.

Q̂HO(s0, a,H) =

®
0 if H = 0

cost(a) + 1
width

∑width
i=1

[
penalty(w1, G0 ∪ F i) + c(π∗

Πi
HO(si1,H−1)

)
]

otherwise (6)

Q̂SE(s0, a,H) =

ß
0 if H = 0
cost(a) + penaltyGDS(w1, G0 ∪ F) + c(π∗ΠGDS(s1,H−1)) otherwise (7)

Figure 2: Estimation of the action-value function in HO (above) and GDS-SE (below) for a ∈ A(s0). si1 = (w1, G0 ∪ F i) and
s1 = (w1, G0 ∪ F) are the next states when a is applied to s0 = (w0, G0), respectively.

Given an OCPP state s = (w,G), the corresponding
PSP-HSD problem would be ΠGDS(s,H) = (F ,A, w,G ∪
F, CGDS, H). This problem is also fully deterministic. F and
A are defined as in HO; the soft goals are equal to the set of
all posible goals: the known ones at s, G, and the future ones
F = G \G. The cost function CGDS is:

CGDS(a,w′) = cost(a) + penaltyGDS(w′, G ∪ F) (7)

where, the penalty is computed as the sum of individual goal
penalties (as in Equation 3). And the individual goal penalty
is defined as:

penaltyGDS(w′, g) =

{
kg × P (g) if g ∈ F ∧ g 6∈ w′
kg if g ∈ G ∧ g 6∈ w′
0 otherwise

(8)
Therefore, in GDS, V ∗(s,H) is approximated directly as

the cost of the optimal plan V̂GDS(s,H) = c(π∗ΠGDS(s,H)).
This approach allows for three different action selection

schemes: Step Execution (SE), Long Execution (LE) and Re-
active (R). In Step Execution (SE), for every current OCPP
state s0 = (w0, G0) and applicable action a ∈ A(s0), the
next state is s1 = (w1, G0 ∪ F), where w1 is the resulting
world state of applying a to w0. Then, the optimal action-
value function is approximated by Equation 7 (in Figure 2).
The selected action a = argmin a∈A(s0)Q̂SE(s0, a,H). The
number of planning processes executed at every current state
s0 is exactly the number of applicable actions: |A(s0)|, and
the total number of calls to the planner is:

∑
si
|A(si)| (si has

the same meaning as before).
In Long-term Execution (LE), given that we have a plan

that provides the current state value function, V̂GDS(s0, H),
instead of computing a different plan at each time-step, we
can choose to execute the actions in that plan as long as possi-
ble. Actually, since actions are deterministic on world states,
we only need to compute a new plan when the current one
finishes its execution or new and non-achieved goals arrive.
In those cases, a new plan is generated, taking the state at the
current time-step as initial state, s0. The number of planning
processes executed at each time-step is less than or equal to
one. And the total number of calls to the planner is less than
or equal to the number of steps where new goals arrived be-
fore H . Given that this scheme greatly reduces the number of
planning processes, and therefore the time of the action se-
lection process, the horizon can be larger than the horizons
applied in other schemes as HO.

The Reactive (R) scheme just plans for the current goals,
ignoring any future. And it replans at each time step when

new goals arrive. It is based on the reactive scheme used by
Burns et al.. The corresponding PSP-HSD problem is similar
to the ones defined for SE and LE, but without considering
any future. That is, for a current state s0 = (w0, G0) where
replanning is performed, the PSP-HSD problem to solve is:
Π∅GDS(s0) = (F ,A, w0, G0 ∪ ∅, CGDS, H), where ∅ indicates
an empty set of future goals. The total number of calls to the
planner is equal to the number of steps where new goals ar-
rived before H .

5 Solving PSP-HSD Problems
Current planners are not prepared to deal directly with all
features of PSP-HSD tasks: bounded horizon, soft goals and
state-dependent costs. Hence, we propose to compile PSP-
HSD tasks into PDDL models that can be handled by some
existing planner. More specifically, we model PSP-HSD tasks
as numeric planning tasks expressed in PDDL2.1 [Fox and
Long, 2003]. A numeric planning task is defined by a tu-
ple Ψ = (PN,A, I,G,M), where PN is a set of proposi-
tional and numeric fluents, A is a set of actions, I ⊆ PN and
G ⊆ PN are the initial state and the (hard) goals respectively
and M is a numeric metric function [Hoffmann, 2003]. Opti-
mal plans are those that achieve all goals with the minimum
metric value.

Given the PSP-HSD task Π = (F ,A, I, SG, C, H), where
C is defined additively in terms of action costs and goal penal-
ties, the corresponding numeric task ΨΠ is generated auto-
matically: soft goals are compiled away, the bounded horizon
is modelled with numeric fluents and the metric depends on a
state-dependent cost function. To compile soft goals away we
have adapted Keyder&Geffner approach [2009], considering
also the ideas of Benton et al. [2012] about state-dependent
costs. The specific differences to these compilations are ex-
plained at the end of this section. The corresponding nu-
meric planning task is ΨΠ = (F ∪ F+,A′, I ∪ I+, G,M).
F+ contains the additional propositions and numeric func-
tions defined in the first column of Table 1, and described in
the second column. The set of actions A′ is generated from
the actions in A and includes additional forgo actions as ex-
plained below. I+ contains the initialization of the new facts
and functions. They are specified in the last column of Ta-
ble 1. G contains a fact (collected-p args) for every soft goal
(p args) ∈ SG. These are considered as the hard goals of the
new problem. For instance, if we have the soft goal (at pkg1
loc3) in the Logistics domain, it would generate the hard goal
(collected-at pkg1 loc3). M is the metric of the task, defined
to minimize (action-cost) + (goal-cost).

F+ elements Description Value at the initial state I+
(sg-p args) Represents the fact that p with arguments args is a pending soft

goal in SG
One fact of this type per soft goal g =(p args) in SG except for
those included in I

(collected-p args) Hard goals, one for each soft goal p with arguments args One fact of this type per soft goal g= (p args) such that g ∈ I
(penalty-sg-p args) Function that represents the individual penalty for every soft goal

(p args)
Pre-computed individual penalty to pay for a soft goal g=(p args)
when it is not achieved in a state, as defined by C.

(total-penalty) Function that represents the sum of all instantaneous penalties
that should be paid at each state

Initial sum of penalties for all soft goals g=(p args) not included
in I. It is computed as

∑
g∈SG,g 6∈I (penalty-sg-p args)

(num-steps) Function that represents the depth of each node in the search 0
(horizon) Function that represents the horizon H
(goal-cost) Function that represents the total cost due to penalties in a state 0
(action-cost) Function that represents the total cost of the applied actions in a

state
0

Table 1: Description of the new predicates and numeric functions in F+ and their initial values.

The following paragraphs explain how the new set of ac-
tions A′ is generated in terms of PDDL action schemas.

Every action a ∈ A adding a literal that matches any
soft goal (i.e. a fact of type (p args), where p is a predicate
present in SG), generates two actions, a∼p and ap, in A′. The
action a∼p represents the case where the added fact is not a
pending soft goal. And ap represents the opposite case. The
action a∼p is defined as follows:2

- pre(a∼p) = pre(a) ∪ preH ∪ { (not (sg-p args)) }
- add(a∼p) = add(a) ∪ addC ∪ addH ∪ add∼

- del(a∼p) = del(a)

where the precondition (not (sg-p args)) ensures there is not a
soft goal in Π for the fact the action achieves; preH guar-
antees that the action is applied inside the horizon; addC
increases the fluent (action-cost) by the cost of the action,
cost(a); addH updates the current depth; and add∼ updates
the goal cost:

- preH = { (< (num-steps) (horizon))}
- addC = { (increase (action-cost) <cost(a)>)}
- addH = {(increase (num-steps) 1)}
- add∼ = { (increase (goal-cost) (total-penalty))}

Actions ap are the only actions that actually achieve goals.
They achieve the hard goals (collected-p args), since they
ensure the achievement of the soft goal (sg-p args) within
the horizon. Besides, they update the cost for not achieving
goals, considering that the penalty of the achieved goal is not
paid from then on. They also decrease the total penalty by
the penalty of the achieved soft goal. The add effects add−
denote a decrease of the total penalty:

- pre(ap) = pre(a) ∪ preH ∪ { (sg-p args) }
- add(ap) = add(a) ∪ addC ∪ addH ∪ { (collected-p args) } ∪ add−

- del(ap) = del(a) ∪ { (sg-p args) }

where:
add
−

={(increase (goal-cost) (- (total-penalty) (penalty-sg-p args))),

(decrease (total-penalty) (penalty-sg-p args))}

Every action a ∈ A deleting a literal that matches any
soft goal, generates also two actions, a∼¬p and a¬p, inA′. The
action a∼¬p represents the case where the deleted fact is not
a collected soft goal. And a¬p represents the opposite case.
Then, the action a∼¬p is defined as follows:

- pre(a∼¬p) = pre(a) ∪ preH ∪ { (not (collected-p args)) }

2For the sake of clarity, we assume each domain action only adds
or deletes one soft goal. However, this assumption can be easily re-
moved by just generating the corresponding cross-product.

- add(a∼¬-p) = add(a) ∪ addC ∪ addH ∪ add∼

- del(a∼¬p) = del(a)

The action a¬p deletes a collected soft goal and updates the
goal cost and total penalty since the penalty for the deleted
soft goals should be paid again:

- pre(a¬p) = pre(a) ∪ preH ∪ { (collected-p args) }
- add(a¬p) = add(a) ∪ addC ∪ addH ∪ { (sg-p args) } ∪ add+

- del(a¬p) = del(a) ∪ { (not (collected-p args) }

where add+ denotes an increase of the total penalty:

add
+

={(increase (goal-cost) (+ (total-penalty) (penalty-sg-p args))),

(increase (total-penalty) (penalty-sg-p args))}

Every other action a ∈ A (it that does not add/delete any lit-
eral that matches with the predicate of a soft goal), generates
a new action a′ ∈ A′ defined as follows:3

- pre(a′) = pre(a) ∪ preH

- add(a′) = add(a) ∪ addC ∪ addH ∪ add∼

- del(a′) = del(a)

Additional new forgop actions are included in A′ for each
different predicate p in a pending soft goal. Forgo actions are
fictitious actions, whose only purpose is to generate the hard
goal (collected-p args) for non-achieved soft goals once the
horizon has been reached. They are removed from the plans
on a post-processing step. Since the penalty for not achieving
these soft goals has already been paid, forgo actions do not
have cost. The forgop actions have the following definition:

- pre(forgop) = { (≥ (num-steps) (horizon)), (sg-p args)) }
- add(forgop) = { (collected-p args) }
- del(forgop) = { (sg-p args) }

The main difference between our compilation and the com-
pilation of Keyder&Geffner 2009 is that ours allows the plan-
ner to pay the penalty for not achieving goals step by step. On
the contrary, in Keyder&Geffner compilation the full penalty
for not achieving a goal is paid when the goal is artificially
added, i.e. in the corresponding forgo action. The approach
by Benton et al. 2012 represents penalties by a continuous
cost function since the time is represented by a PDDL+ pro-
cess simulating continuous time. Our approach can be seen as
a discretized version of this approach for numerical planning
in PDDL2.1.

Instead of using numerical planning, an alternative ap-
proach would be to compile away state-dependent actions
costs [Geisser et al., 2015]. However, the compilation would

3The no-op action belongs to this type.

need an exponential number of actions in our case, which
would make this approach intractable.

6 Experiments and Results
Very few domain-independent planners handle adequately
state-dependent cost functions. Therefore, in practice, we are
restricted to these planners which in addition compute sub-
optimal plans. For these experiments the base solver was
LPG-td [Gerevini et al., 2006]. So, we compare four alter-
natives: Hindsight optimization (HO), Reactive and our tech-
niques, GDS-LE and GDS-SE. There are no other techniques,
to our knowledge, to compare against. It is easy to show that
any standard MDP-based technique will not scale to the size
of the problems we use for testing, as was also previously
shown [Burns et al., 2012].

We have used three well known IPC planning benchmarks:
Satellite, Rovers and TPP; and a fourth domain that we mod-
elled in PDDL to simulate the surveillance UAV scenario de-
scribed by Burns et al. [2012]. These domains are very ap-
propriate for this research, since they might benefit from an-
ticipating future goals and they fulfill all the defined assump-
tions. For each IPC domain we modified the available random
problem generator to create a new class of problems in which
the list of goals are the majority of possible goals given the
problem objects. For instance, in Satellite, the goals consist of
having images of all directions in all modes. Also, we defined
a no-op action with zero cost.

The experiments focused on two types of scenarios. In the
first one we analyze the anticipatory behaviour of GDS plan-
ning having a constant penalty per goal with a random distri-
bution of goal arrivals. In the second one we study the effect
of having a particular penalty distribution for not achieving
goals, while goals have an equal probability of arriving at cur-
rent the step.

6.1 Random Goal Arrival Distribution
For each domain we generated three problems of increas-
ing size (in number of goals as shown in Table 2). We have
(suboptimally) solved these problems and then set the exe-
cution horizon as 1.25 times the length of the solution (as
in [Burns et al., 2012]). For each problem, we generated a
random set of 10 future goal schedules to be provided as in-
put to all planning-execution cycles. Thus, the total number of
instances was 120. Each schedule was generated by sampling
a uniform distribution to assign to each goal the probability
of appearing within the horizon. We computed each goal ar-
rival probability P (g) at each step from this value. Then, the
schedule is generated doing Bernoulli trials with P (g) until
getting a success or reaching the horizon. At the end, each
schedule is a list of ordered pairs (gi, ti), where gi ∈ F is a
future goal, and ti is the time-step when gi will arrive.

We set as penalty kg = 100 for all goals in all executions.
Action costs in the domains are in the order of units. There-
fore, the total cost will mainly reflect the ability of different
approaches for optimizing the penalty. Experiments were run
on a cluster with Intel XEON 2.93 Ghz nodes using Linux
Ubuntu 12.04 LTS. Each machine was limited to use 7.5Gb
of RAM. The configuration of each evaluated approach is:

Problem GDS-LE GDS-SE HO Reactive
(# goals) time cost time cost time cost time cost
rover-1 (14) 5.6 2.3 68.8 3.9 22.5 20.4 6.7 3.7
rover-2 (22) 9.3 12.5 125.3 34.7 57.2 77.7 11.1 10.0
rover-3 (26) 9.2 14.6 160.6 41.1 87.7 92.3 12.7 9.2
satel-1 (32) 9.7 4.2 66.6 7.3 27.0 51.0 13.6 7.7
satel-2 (50) 18.0 20.1 113.1 41.6 57.7 153.1 22.7 19.2
satel-3 (72) 22.8 41.9 129.1 127.7 89.9 253.4 30.1 30.9
tpp-1 (12) 5.0 3.4 52.5 2.6 19.4 15.5 5.0 4.0
tpp-2 (18) 7.3 9.0 87.7 6.2 38.6 35.3 7.4 7.2
tpp-3 (24) 10.1 18.9 124.5 17.1 80.7 65.2 11.3 12.3
uav-1 (24) 8.1 5.0 67.0 4.9 10.6 35.9 9.7 7.3
uav-2 (40) 15.6 16.7 121.3 13.2 20.5 125.8 18.2 16.7
uav-3 (60) 22.2 59.8 181.5 63.7 68.1 286.4 27.4 21.9

Table 2: Average accumulated time in minutes and average
total cost in thousand units on 10 executions.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

A
c
h

ie
v
e

d
 S

te
p

Arrival Step

Goals in Satellite

GDS-LE
GDS-SE
Reactive

HO

Figure 3: Arrival vs. achievement times for goals in problem
satel-1 and for the 10 executions.

- Reactive (R): it runs LPG-td with the configuration for
anytime planning and a time bound of 60 seconds. H is
equal to the execution horizon.

- GDS-LE: the same configuration as Reactive.
- GDS-SE: we setH = 8. The step-timeout of 60 seconds

is divided equally between the planner calls (LPG-td in
anytime mode) for each applicable action.

- Hindsight Optimization (HO): we set H = 8 and
width = 20 samples. Dividing the same 60 seconds be-
tween the number of needed planner calls would result
in a very short time. Therefore, we let the planner run
until it returns the first solution (LGP-td speed mode).

Table 2 shows the average total cost for each problem and
the average accumulated planning time during a complete ex-
ecution. GDS-LE improved the total cost of Reactive in the
first problem of each domain, and GDS-LE was better than
Reactive in three cases. This reflects the ability of GDS ap-
proaches to reduce the penalty by means of anticipating fu-
ture goals. This can be confirmed in Figure 3 which plots the
relation between the goal arrival and goal achievement time
in all executions of the problem satel-1. All points below the
diagonal represent goals achieved before arrival.

Regarding HO, the step time bound greatly affects its per-

Problem GDS-LE GDS-SE Reactive
(# goals) time cost time cost time cost
rovers-2 35.0 5.3 595.6 8.9 49.0 7.8
satel-2 88.0 16.0 562.8 20.8 110.0 18.5
tpp-2 44.0 8.6 404.2 6.8 45.5 10.3
uav-2 70.5 14.3 600.4 12.0 84.5 15.5

Table 3: Re-execution of medium size problems with 300 sec-
onds per step. Results show average accumulated time in min-
utes and average total cost in thousand units on 10 executions.

formance, with very bad results with our experimental setting.
It is able to anticipate to some goals, as we can see in Fig-
ure 3. But, it left many others unachieved, because of the bad
quality of the first solution given by the planner. In a domain-
independent planning context, we do not forsee any alterna-
tive to the approximate computation of the best action to be
applied at each time step. Any implementation of HO has to
deal with the issue of a large number of planner calls imposed
by the sampling of Monte Carlo’s schemes. For instance, HO
needed to solve 28,750 planning tasks on average in satel-
1 and almost 78,000 in satel-3. Even though the horizon is
small, there is no practical way to apply domain-independent
optimal planning for these tasks in a reasonable per-step time
limit.

GDS-SE and LE planning performance degrades in the sec-
ond and third problems, because the number of possible fu-
ture goals increases with the problem size, while the average
goal arrival rate hardly increases between problems. There-
fore, both GDS-LE and GDS-SE have to plan for larger goal
sets, given that they plan for all problem goals in advance.
However, Reactive only plans for known goals, so its prob-
lems remain relatively small and they are easier to optimize
for the planner. In execution traces of larger problems we
found that plans of the GDS approaches were of bad quality,
mainly because the planner did not have enough time to im-
prove its first solutions. Therefore, the strength of GDS plan-
ning will depend on the available planning time at each step.
The longer time per step, the longer time the planner would
have to optimize its solutions.

To verify this intuition we have re-executed the second
problem of all domains (we already obtained good results
with the first one), but providing a time bound of 300 seconds
per time step. Thus, LPG-td has more time to optimize plan
quality. Results are shown in Table 3. As we can see, the av-
erage cost for Reactive is fairly similar, but GDS planning ap-
proaches greatly improved their performance, specially GDS-
SE. For instance, GDS-SE got almost a reduction of 25% of
the average cost achieved with 60 seconds per step. With this
setting GDS-LE was better than Reactive in all domains, and
GDS-SE was better in two out of four domains.

6.2 Different Goal Penalties
In this experiment we wanted to analyze the behaviour of
anticipatory search when goals have the same arrival prob-
ability, but they have different penalties. We have used the
small problems of each domain. For each problem we shuf-
fled the goal list and then assigned to each goal i the penalty
1000 × 1/ri, where ri is the position of goal i in the list of
goals. Using this formula we tried to reproduce a power law

Problem GDS-LE GDS-SE Reactive
(# goals) time cost time cost time cost
rovers-2 9.1 13.5 69.2 23.6 9.9 35.3
satel-2 16.9 16.8 64.7 24.5 20.9 41.2
tpp-2 8.3 44.4 52.0 34.7 8.0 66.8
uav-2 15.2 20.1 65.7 19.5 16.1 66.0

Table 4: Results show average accumulated time in minutes
and average total cost in thousand units on 10 executions.

Figure 4: Average time difference of the arrival and achieve-
ment of goals for each of the evaluated configurations in the
satel-1 problem.

distribution of penalties, in which very few goals are very im-
portant, but the majority of goals have low penalty per step
if they are not achieved. For each problem, all goals have the
probability of appearing in a future schedule of 0.8. Goal ar-
rival probability was set accordingly taking into account the
length of the schedule (i.e., 1.25 times the length of the solu-
tion of the original problem, as in the first experiment). The
time bound per step was set again to 60 seconds.

Table 4 shows the average accumulated time and cost for
this setting. Clearly, when there are some few important
goals, it makes sense to anticipate to them for not paying
high penalties. GDS planning approaches are able to recog-
nize this situation, performing much better than Reactive in
all domains. Looking for more details, we have computed ∆t
as the time step difference between the times when each goal
has arrived and it has been achieved. Figure 4 shows the av-
erage of ∆t in the satel-1 problem, sorting the goals in terms
of their penalties. The x-axis is the goal order (i.e., ri posi-
tion used to generate its penalty). The y-axis is the average of
∆t for each goal. Positive values of ∆t indicate that on av-
erage this goal has been achieved before its arrival. All con-
figurations show a trend towards worse ∆t when the goals

become less important. However, GDS-LE and GDS-SE start
from higher points and are able to obtain positive ∆t for some
goals, especially for the two goals with a higher penalty.

7 Conclusions and Future Work
We have introduced new approaches to solve OCPPs from a
domain-independent planning perspective. We have charac-
terized them in terms of PSP-HSD tasks, that provide a gen-
eral setting that is useful to model other approaches based on
deterministic planning. Also, we have proposed a compila-
tion of these tasks into numerical planning that allows us to
solve them with current planners. The results are very promis-
ing, regarding their anticipatory behavior in the short allot-
ted time. If the base planner is able to provide good quality
plans in the available time, GDS-planning approaches per-
form better than a hindsight optimization based approach.
Our GDS planning schemes are not linked to any particu-
lar planner, so they can benefit from future improvements on
state-dependent costs. PSP-HSD is a general framework that
permits a wide variety of extensions: incorporating goal dead-
lines and priorities, studying different replanning schemes; or
extending it to temporal and/or multi-agent planning.

Acknowledgements
The authors would like to thank Wheeler Ruml for his help
on understanding their approach. This work has been partially
supported by MICINN project TIN2014-55637-C2-1-R.

References
[Bellman and Kalaba, 1965] R. Bellman and R. Kalaba. Dy-

namic Programming and Modern Control Theory. Aca-
demic Press, 1965.

[Benton et al., 2012] J. Benton, A. J. Coles, and A. I. Coles.
Temporal planning with preferences and time-dependent
continuous costs. In Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), June 2012.

[Burns et al., 2012] Ethan Burns, J. Benton, Wheeler Ruml,
Sung Wook Yoon, and Minh Binh Do. Anticipatory
on-line planning. In Lee McCluskey, Brian Williams,
José Reinaldo Silva, and Blai Bonet, editors, Proceedings
of the 22nd International Conference on Automated Plan-
ning and Scheduling (ICAPS), 2012.

[Chong et al., 2000] Edwin K. P. Chong, Robert L. Givan,
and Hyeong Soo Chang. A framework for simulation-
based network control via hindsight optimization. In IEEE
Conference on Decision and Control., 2000.

[Fox and Long, 2003] Maria Fox and Dereck Long.
PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence
Research (JAIR), pages 61–124, 2003.

[Geisser et al., 2015] Florian Geisser, Thomas Keller, and
Robert Mattmüller. Delete relaxations for planning with
state-dependent action costs. In Proc. of IJCAI, pages
1573–1579, 2015.

[Gerevini et al., 2006] Alfonso Gerevini, Alessandro Saetti,
and Ivan Serina. An approach to temporal planning and
scheduling in domains with predictable exogenous events.
Journal of Artificial Intelligence Research (JAIR), 25:187–
231, 2006.

[Hoffmann, 2003] Jörg Hoffmann. The METRIC-FF plan-
ning system: Translating ”ignoring delete lists” to numeric
state variables. Journal of Artificial Intelligence Research
(JAIR), 20:291–341, 2003.

[Keyder and Geffner, 2009] Emil Keyder and Hector
Geffner. Soft goals can be compiled away. Journal of
Artificial Intelligence Research (JAIR), 36:547–556, 2009.

[Kiesel et al., 2013] Scott Kiesel, Ethan Burns, Wheeler
Ruml, J. Benton, and Frank Kreimendahl. Open world
planning for robots via hindsight optimization. In Pro-
ceedings of the ICAPS-13 Workshop on Planning and
Robotics (PlanRob-13), 2013.

[Puterman, 1994] M. L. Puterman. Markov Decision Pro-
cesses - Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., New York, NY., 1994.

[Ruml et al., 2011] Wheeler Ruml, Minh Binh Do, Rong
Zhou, and Markus P. J. Fromherz. On-line planning and
scheduling: An application to controlling modular printers.
Journal of Artificial Intelligence Research (JAIR), 40:415–
468, 2011.

[Yoon et al., 2008] S. Yoon, A. Fern, R. Givan, and S Kamb-
hampati. Probabilistic planning via determinization in
hindsight. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 2008.

[Yoon et al., 2010] S. Yoon, W. Ruml, J.and Benton, and
M. B. Do. Improving determinization in hindsight for
online probabilistic planning via determinization in hind-
sight. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), 2010.

