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Abstract
Multi-agent systems mostly consist of self-
interested agents, which behave selfishly to achieve
their goals. However, their limited capabilities and
knowledge, environment’s constrained resources
and shared goals lead them to a collaborative goal
achievement process. Based on previous find-
ings, assuming fixed organizational structures is not
practical solution for dynamic multi-agent systems.
Therefore, agents need to acquire an understand-
ing of the other agents’ goals and policies, update
their current perception of their environment con-
stantly and form/reorganise an effective community
for any instances of a collaboration process.
This paper summarizes a Collaboration Commu-
nity Formation Model (CCFM) introduced in [Gol-
payegani et al., 2016] in a conceptual level. This
model describes the fundamental structural ele-
ments of a dynamic collaborative community. We
also introduce an agent model which describes
agents’ internal components that allows agents to
model their dependencies using goal reasoning and
self-organise their collaboration community and se-
lect their potential collaborators amongst the nu-
merous agents in the system.

1 Introduction
Multi-agent collaboration is a coordinated behaviour in which
a collaboration community is formed and members negotiate
to achieve a mutually accepted stance and cooperate to fulfil
their shared goal [Grosz and Kraus, 1999]. As an example, in
congestion management, vehicles may collaborate to achieve
better throughput at junctions [Dusparic and Cahill, 2009],
or in residential energy demand management system, house-
holds may collaborate to make better use of low cost energy
during the off-peak hours. [Golpayegani et al., 2015].

Collaboration community formation is dependent on the
multi-agent system’s organization. A multi-agent system or-
ganization can be defined using agents’ individual and collec-
tive behavioural and structural characteristics. These charac-
teristics, such as agents’ relations, roles, policies, intentions
and goals determine the behaviour of the systems and the or-
ganizational structure of its elements [Horling and Lesser,

2004]. A successful collaboration process requires an ef-
fective community of agents which are willing to engage in
the process. However, fixed organizational structures such
as hierarchies and holarcies are not practically applicable as
multi-agent systems are mostly embedded in dynamic envi-
ronments. Dynamic organization formation such as coali-
tion formation, teamwork and self-organizations are the ap-
proaches that have been used in such environments.

Coalition is a goal-directed and short-lived group of agents
in which participants increase their utility by working to-
gether and helping each other to perform tasks that a single
agent cannot carry out by itself [Shehory and Kraus, 1998].
Coalitions are formed to increase the utility of every single
self-interested individual agent during a cooperating process.
Coalition formation approaches mostly focus on maximizing
the individual utilities of the agents in the coalition. It is
claimed that the effectiveness of these coalitions is not af-
fected by the arrangements of the other existing agents in the
systems [Rahwan et al., 2012]. However, they do not ad-
dress agents collaboration for shared goal achievement, when
agents may have conflicting goals that may affect their col-
laboration community organization.

Team is an organization of cooperative agents working to-
gether towards a shared goal. Team members coordinate their
actions and cooperate to maximize the team’s utility [Tambe
et al., 1999]. A team is a specific form of collaboration where
team members do not have any individual goals, or their goals
are a subset of shared goal. In teamwork approaches the fo-
cus is on role assignment and task distribution to the par-
ticipating agents to achieve a shared goal [Nair and Tambe,
2005]. However, generally, most agents have individual goals
that may conflict with the shared goal in some circumstances.
This makes the collaboration process challenging, as agents
should find a balance between fulfilling their individual and
shared goals.

Self-organisation is a paradigm that enables agents to adapt
their structures to the changes in their environment or require-
ments without any external control [Serugendo et al., 2006].
Such adaptation includes forming a new structure (e.g., col-
laboration community) or rearranging the existing structure
to meet the requirements. Self-organisation have been used
in many existing works such as team formation [Hoda et
al., 2010] and emergent planning [Picard et al., 2005], to
form suitable networks and structures of agents for cooper-



ation purposes. For example, the DIET platform [Hoile et
al., 2002] enables agents cooperatively exchange information
and rearrange their structure according to the changes in their
requirements. However, it does not use self-organisation for
collaborative goal achievement process.

There are a number of reasons why a dynamic collabo-
ration community formation is essential in multi-agent sys-
tems; firstly, in a dynamic multi-agent system where agents
can join and leave a system, it is not possible to consider
a definite structure as it is a non-deterministic environment.
Secondly, having a shared goal and suitable capabilities are
necessary factors for community formation. However, they
are not sufficient, since agents’ individual goals and poli-
cies may conflict with others in certain timesteps. More-
over, a lot of existing work (e.g., [Rahwan et al., 2009;
Michalak et al., 2010]) assumes that all the agents in the envi-
ronment are the potential collaborators and they have to share
their states and information whether or not they are willing
to engage in a collaboration process. This assumption affects
the efficiency of collaboration, as agents share information
with agents that might not be eager to collaborate.

The rest of this paper is organised as follows: Section 2
introduces the Agent Model and briefly reviews CCFM. The
experiment design is presented in Section 3 and the results
are discussed in Section 4. The conclusions and future work
are discussed in Section 5.

2 Multi-agent Collaboration
Limited knowledge, complicated tasks, constrained resources
and shared benefits or goals are some of the reasons for
agents to cooperate. Agents’ cooperation for achieving a
shared goal is called collaboration. For a successful collab-
oration, agents need to prioritize their goals, form an effec-
tive collaboration community and coordinate their behaviour
to achieve the shared goal. The effective collaboration com-
munity consists of agents with a shared goal or agents with
shared benefit (e.g., their individual goal achievement de-
pends on others shared goal achievement). In a dynamic sys-
tem where agents’ organisation cannot be pre-designed, find-
ing collaborators and forming an effective community is chal-
lenging [Golpayegani, 2015]. To address these issues, this
paper describes the following models: a conceptual model
of the previously proposed Collaboration Community For-
mation Model (CCFM) supported with a new self-organising
design for agents. Applying these two models, agents can
reason about their neighbours’ goals and changes in their en-
vironment to form effective communities.

2.1 Agent Model
Agents should be able to autonomously make their deci-
sions and take actions towards their goals (e.g., individual
and shared goals). They also need to constantly update their
perception of the environment as it changes frequently. For
example, they need to be aware of changes in the availabil-
ity of the resources they depend on or the other agents that
they may need to interact with. To address these issues, we
considered three main structural blocks for the agents in our
model: Self-organising Unit, Goal Relation Type Model and

Figure 1: Agent Model

Decision-Making Unit. These blocks are depicted in Figure
1 and described as follows.

Self-organising Unit
Self-organising Unit enables agents to adapt their mental
model (e.g., the overall understanding of their surrounding)
to the changes in their environment and communities. These
adaptations reflect on their goal and policy rearrangement
and action selection process, which happens in the Decision-
Making Unit. This unit manages agents mental model of the
environment including agent’s communities and the members
of those communities. It updates this model when a new agent
joins the community or a member leaves. When an agent
joins the community for the first time, the self-organising unit
has to build a mental model by interacting with the commu-
nity members.

Goal Reasoning Unit
Each agent holds a Goals’ Relation Type Model (GRTM),
which stores its goals’ relations with other agents in the
same community. These relations include any conflicts, over-
laps, precedence dependencies that each agent’s goals might
have with others. GRTM helps the agent to find proper col-
laborators for each collaboration process considering their
goals’ relations. For example, if the collaborating agents have
conflicting goals their collaboration will not be successful.
Agents identify their goals’ relation types based on their goals
and policies and current states.

Decision-Making Unit
Agents decide what community to join, necessary actions to
take to achieve goals and whether to collaborate or not. They
may use different artificial intelligence algorithms such as
learning [Dusparic et al., 2013], evolutionary or collabora-
tive approaches [Golpayegani et al., 2016] to find an optimal
solution. In this paper we specially focus on collaborative ap-
proaches that agents decide about their next actions individu-
ally and collaborate if the shared goals are not achievable.



Figure 2: Conceptual Model for CCFM

2.2 Collaboration Community Formation Model
CCFM enables agents to find the most related collaborators
and form an effective collaboration community. CCFM’s
conceptual model captures the fundamental structural ele-
ments of a dynamic system where agents initiate their col-
laborative processes. As depicted in Figure 2, each system
has at least one NeighbourCommunity which is associated
with a single resource. NeighbourCommunity composed of
agents (Community Member) which share a resource. Each
Community Member can join or leave a community at any
time during its lifetime and it can be the member of more
than one community. Agents broadcast their state when they
join/leave a community and other Community Members up-
date their GRTM.

The collaboration initiator agent (e.g., could be any of the
agents in the NeighbourCommunity that identifies the need
for collaboration to achieve a shared goal) nominates a group
of possible collaborators. It uses its GRTM and sends col-
laboration requests to those which have overlapping or de-
pendent goals, if they do not have conflicting goals or poli-
cies. It then waits for time t to receive acknowledgements.
The agents which have received a collaboration request either
accept or reject it, considering their current state, individual
goals and policies. Finally, the collaboration community will
be formed with the agents which agreed to collaborate.

3 Experiment Design
This experiment evaluates the performance of CCFM using
smart-grid scenarios. The aim of this evaluation scenario is
to compare the performance of a selfish approach and a coop-
erative approach and CCFM which tries to balance the self-
ishness and level of cooperation. Settings as follows:

• A team-based approach where agents try to achieve the
team’s goal and subsequently their individual goals have
a lower priority. In this approach, all the agents in a
NeighbourCommunity which use the same resource
are team members.

• The CCFM approach where agents try to bal-
ance their selfishness and level of cooperation
using CCFM. In this scenario, if the shared goal
is not achievable with the individually decided
actions, a CollaborationCommunity will be
formed based on agents’ AGMs, GRTMs and the
NeighbourCommunity.

• The P-MCTS approach where agents maximize their
own utilities by achieving their individual goals. In this
approach, agents take their individual actions indepen-
dently.

• We have also included the results from a Greedy ap-
proach as a baseline, in which agents neither form any
specific organizations nor use any artificial intelligence
and act selfishly to achieve their goals.

These scenarios are simulated using GridLAB-D, which is
a power network simulator developed by the US Department
of Energy [Chassin et al., 2008].

3.1 CCFM in Smart Grid Scenario
Energy demand is unevenly distributed over a day, depend-
ing on households’ consumption. It usually increases in the
morning and peaks in the evening (when people get ready
to leave their houses and when they get home), and the off-
peak hours starts from mid-night. The maximum demand de-
termines the grid’s available capacity for the whole day. If
demand increases during peak hours, the utility companies
turn on more generators, which is costly. Load balancing and
shifting it from peak hours to off-peak hours is an approach to
decreasing cost for companies and end-users. The smart-grid
scenario was chosen because it can include both selfish and
cooperation characteristics in agents (representing electrical
devices), when they interact with each other within a system
(representing the grid). Additionally, different types of goals
and dependencies can be covered.

The scenario covers a community of 90 houses with an EV
for each house, in a neighbourhood served by a single trans-
former. The energy usage in each house is categorised into



two types: the base load, which is the normal energy con-
sumption of electrical devices, and reschedulable load, which
is an EV’s consumption (battery charging) that can be co-
ordinated with other EVs’ consumption over the grid. Each
EV might have a different daily plan (leaving and arriving
time) and journey length. EVs coordinate their consumption
through collaboration to achieve their individual goals and
shared goal(s) simultaneously. EVs require an average of 6
hours to be sufficiently charged to meet their individual goals,
and 10 hours to be charged 100%. This community has 10
Emergency EVs (EEVs) (e.g., local doctor’s vehicle) and 80
regular EVs. An EEV starts charging as soon as it gets back
home. The normal EV tries to get enough charge for the next
journey and minimize its cost by maximizing off-peak time
consumption, when low cost energy is provided. EVs self-
organise their consumption plans according to the changes in
the grid’s capacity and their neighbours charging plans). The
shared goal is to minimize the overload times and to balance
the demand over the peak and off-peak hours. It incentivises
EVs with low cost energy during off-peak hours.

In this scenario, 350 KW is selected as 85% of actual
grid capacity. In a real setting, experts adapt it according to
predicted consumptions. The system’s (including EVs and
EEVs) goal is to reduce peak usage.

Action Selection
EVs can choose ON or OFF as their actions in each timestep
(e.g., 15 minutes). In all of the approaches mentioned,
EVs individually calculate their best actions using a best
first search method called Monte Carlo Tree Search (MCTS)
which has been shown to improve agents action selection per-
formance [Golpayegani et al., 2015]. In the P-MCTS ap-
proach, EVs do not coordinate but take individual actions.
In the team-based approach, EVs coordinate their actions if
their collective set of actions would not allow the shared goal
(the transformer load would exceed a certain threshold) to
be fulfilled. In CCFM, both individual and shared goals are
considered during the community formation as oppose to in
team-formation where the shared goal is all that matters. For
example, if the transformer load exceeds its threshold when
10 EVs and 5 EEVs have decided ON as their next actions,
the CCFM invites the EVs and allows the EEVs to achieve
their goals while the team-based approach will consider all
15. However, regards to EEVs individual goal they should
not be stopped charging as they have be charged as soon as
possible.

Collaboration Need Identification
Variation of base load demand results in variations of avail-
able capacity in the grid. At each timestep, if the collective
demand from EVs cannot be handled by the available capac-
ity in the grid, the shared goal will not be achieved. EVs
know the constraint (the maximum available load) and the
other EVs in their NeighbourCommunity that want to use
the same resource for the coming timestep. As an example,
if the transformer capacity is 80 EVs for the next timestep
and 85 EVs have decided to use electricity, this will result in
transformer overload (shared goal failure). Therefore, the ini-
tiator EV explores its GRTM and invites the related EVs and
forms the collaboration community.

Parameter Settings
According to CCFM, there are a number of parameters that
should be set for EVs in this smart-grid scenario. Each
EV/EEV has a minimum State of Charge (SoC) that must
have depending on its travel distance. In this case, we con-
sider 60% of SoC for EVs and 100% for EEVs. The max-
imum amount of SoC is 100%. EVs current SoC is the pa-
rameter that EVs use to decide to accept or reject a collab-
oration request. EVs consider their policy about charging in
off-peak times, their SoC, next journey length, and remain-
ing time until next journey and decide to accept or reject the
collaboration request accordingly.

3.2 Performance Criteria
Performance is measured using the following metrics:

• The smoothness of the load curve is calculated using
Peak-to-Average Ratio (PAR), which shows the distri-
bution of demand over time (the lower the PAR is the
better demand distribution is achieved).

• The number of times the transformer is overloaded,
which shows the shared goal fulfilment.

• The number of times EVs run out of charge, which
shows the fulfilment of EVs’ individual goals.

• The number of EEVs that could not achieve their indi-
vidual goals, which shows how the algorithms behave
with conflicting goals.

• The SoC’s standard deviation for EVs, which shows the
fairness of the algorithms.

4 Results
The transformer load depicted in Figure 3 shows the results
obtained from four different approaches and baseline over
three days. The Greedy approach increases the demand dur-
ing peak time as both EEVs and EVs start charging as soon
as they get back home. In this approach EEVs’ goals and one
of the individual goals of the EVs (e.g., get enough charge for
the next journey) is fulfilled. However, the shared goal (e.g.,
load balancing and shifting the demand to off-peak times)
and one of the individual goals of EVs (e.g., minimizing the
charging costs) are not fulfilled.

In the P-MCTS approach, EVs and EEVs find their charg-
ing plans individually. EVs and EEVs’ individual goals have
priority over the shared goal. This approach has partially
utilised the off-peak times by shifting some part of the EVs’
demand to the off-peak times. However, because EVs do not
coordinate their actions they could not achieve the shared goal
since they are overloading the transformer at peak times (see
Figure 3 and Table 1). In the team-based approach, based on
the shared goal (e.g., minimizing the number of overload) all
EEVs and EVs formed a team and cooperate to achieve the
shared goal.

As shown in Figure 3, the team-based approach has the
best results for demand shifting and load balancing goals(e.g.,
number of transformer Overload = 0 in Table 1). However,
as reported in Table 1, many of the EEVs have not achieved
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Figure 3: Transformer load results for different approaches

their individual goals. In other words, in the team-based ap-
proach, the shared goal has the highest priority. In the CCFM
approach, both shared goal and individual goals are consid-
ered and at each timestep, EVs form a community and make
the best decision. In this approach, EEVs cannot participate
in the collaborations as their goal is dependent on the shared
goal, with Precedence Dependency.

The demand load from CCFM is higher than team-based
and lower than P-MCTS during peak hours (see Figure 3).
This is because it allows the EEVs to achieve their goals in
peak-times and shifts the EVs demand to off-peak times as
EVs try to achieve the shared goals and their individual goals
simultaneously.

As recorded in Table 1, the PAR results show that the team-
based approach has achieved the smoothest transformer load.
This implies that it has achieved the load balancing and de-
mand shifting goals better than CCFM and the P-MCTS ap-
proach. Additionally, these figures show that CCFM achieves
better results than the P-MCTS approach as it has minimized
the number of EVs charging during the peak times and shifted
their uncritical demands to off-peak times.

The team-based approach can be considered as a fully co-
operative approach (achieving the shared goal in all 3 days,
which is the transformer overload = 0), while the P-MCTS
approach is a selfish approach (all individual goals are ful-
filled, which is EVs’ SoC is never less than 0). CCFM has
balanced the selfishness of agents and their level of cooper-
ation as it has overloaded the grid fewer times than the P-
MCTS approach and most of the individual goals are met.

Additionally, the reported standard deviation of EVs’ SoC
(STDEV), shows that P-MCTS and CCFM have a fairer dis-
tribution of SoC for EVs. This can be explained by their
community formation algorithm. In the P-MCTS approach
all the agents can have the same share of grid’s capacity, as
they do not care about the load balancing and demand shifting
goals. In CCFM, EVs’ current state along with their individ-
ual goals and policies determines if they should collaborate
or continue and take their previously decided actions. On the
other hand, the team-based approach allows EVs to take their
actions while they do not have any conflicts with the shared
goal and it does not distinguish between agents with different
SoCs.

5 Related Work
In multi agent systems’ community, the idea of community
formation has been studied in the context of coalition forma-
tion [Rahwan et al., 2009] and team formation [Tambe et al.,
1999].

A lot of existing work in coalition formation assumes that
there is a fully connected static structure of the commu-
nity where all agents know each other and can communicate
with each other [Rahwan et al., 2009; Michalak et al., 2010;
Ramchurn et al., 2010]. However, in dynamic environments
such as open systems, considering all the agents in the envi-
ronment as possible collaborators is not practical, as agents
leave and join communities frequently. Additionally, finding
effective collaborators needs a large number of communica-
tions. To decrease the number of communications between
agents, some approaches have introduced a neighbourhood
community, which consists of agents that are potential col-
laborators [Ye et al., 2013]. However forming a fixed neigh-
bourhood in open systems is not a practical solution.

Abdallah [Abdallah and Lesser, 2004] introduces a coali-
tion formation approach based on underlying organization
structure, which is used to guide agents during their coalition
formation. An organization’s structure is a domain knowl-
edge, which clarifies the agents’ relationships, conflicts and
dependencies. Such knowledge is not achievable in dynamic
systems where agents leave and join the system frequently.

Team formation depends on agents’ goals and capabilities
and the knowledge of formation process [Nair and Tambe,
2005].

Tambe [Cohen and Levesque, 1991] introduces a team ar-
chitecture called STEAM, based on joint intentions frame-
work and SharedPlans theory [Grosz and Kraus, 1999]. The
joint intentions framework explains agents’ reasoning about
joint commitments and shared goals. SharedPlans discusses
the reasoning about joint plans, intentions and beliefs. The
combination of these two theories in STEAM can ensure the
consistency of beliefs for all team members. However, it does
not address the team’s goal’s fulfilment when the team mem-
bers have their individual desires to pursue. Decker [Decker
and Lesser, 1992] introduces a framework called Generalized
Partial Global Planning (GPGP), which forms teams more dy-
namically compared to STEAM. In GPGP, agents have sev-
eral alternative ways to fulfil a specific goal, which is pos-



Table 1: Experimental Results
Statistical Analysis

PAR Transformer Overload EV SoC 6 0 EEV SoC <100 STDEV

Day 1
P-MCTS 1.66 12 0 0 6.61
Team-based 1.45 0 4 3 24.78
CCFM 1.59 5 3 0 6.35

Day 2
P-MCTS 1.78 11 0 0 6.67
Team-based 1.51 0 0 4 24.78
CCFM 1.55 4 0 0 6.75

Day 3
P-MCTS 1.76 13 0 0 6.88
Team-based 1.49 0 3 4 19.40
CCFM 1.63 9 0 0 6.84

sible because they can alternate between a set of individual
plans. Each sub-goal, which is associated with a plan, can
affect other agents in the system. These effects are realized
after a number of interactions. Agents build an internal model
based on their interactions’ effects gradually and use it dur-
ing team formation. This model clarifies how a plan can affect
and be affected by others. Although this approach is dynamic
and considers the agents’ relationships based on their actions,
plans and goals, it does not address the interrelationship be-
tween agents’ individual goals and shared goals.

6 Conclusion and Future work
This paper briefly reviewed a Collaboration Community For-
mation Model (CCFM) supported by an Agent Model which
includes agents’ internal structural components. It addressed
the community formation problem where agents collaborate
to fulfil their individual goals and shared goals simultane-
ously. It enables agents to find a balance between selfishness
and level of cooperation by considering their current state.

This research can be expanded in several directions: The
Agent Model and GRTM can be integrated with the goal
model in GPGP [Decker and Lesser, 1992] to include agents’
alternative plans, when conflicts occur during the collab-
oration. Additionally, CCFM can be expanded to enable
agents to initiate multiple collaboration processes in the same
timestep.
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