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Abstract

Goal recognition is the problem of inferring the
(unobserved) goal of an agent, based on a se-
quence of its observed actions. The prevalent
approach to goal recognition relies on a dedi-
cated plan library, which represents all known
plans to achieve known goals and facilitates ef-
ficient inference. Such methods are inherently
limited to the knowledge represented in the li-
brary. In contrast, we advocate goal mirror-
ing, an online recognition approach that does
not rely on a plan library, but instead uses a
black-box planner to generate recognition hy-
potheses. This paper contributes: (i) an online
goal mirroring algorithm and novel heuristic for
continuous spaces, empirically evaluated in two
challenging domains; (ii) an exploration of the
factors impacting recognition performance; and
(iii) a comparison to prior methods.

1 Introduction

Goal recognition is the problem of inferring the (unob-
served) goal of an agent, based on a sequence of its ob-
served actions [Hong, 2001; Blaylock and Allen, 2004].
It is a fundamental research problem in artificial intelli-
gence, closely related to plan, activity, and intent recog-
nition [Schmidt et al., 1978; Carberry, 2001; Sukthankar
et al., 2014]. The problem has many applications in con-
tinuous environments, e.g., for recognizing intended ges-
tures and sketches [Sezgin and Davis, 2005], or for rec-
ognizing intended navigational goals [Zhu, 1991].

The prevalent approach to goal recognition relies on
a dedicated plan library, which represents all known
ways to achieve known goals [Sukthankar et al., 2014].
Recognition methods—sometimes applicable to contin-
uous domains—vary in the expressiveness of the repre-
sentation and efficiency of the inference algorithms used.
While powerful when the plans are known, this does not
work when the observations come from an unknown plan
to achieve a known goal. An additional difficulty is raised
when adding goals to the set of recognizable goals, as
plans for them need to be inserted in the library, in order

to be recognized. Notable exceptions focus on library-
free recognition, where a planner is used as a black box,
to dynamically generate plans that are matched against
the observations, eliminating or ranking recognition hy-
potheses [Ramı́rez and Geffner, 2009, 2010]. However,
these inspiring approaches target discrete domains only,
and are inefficient for online recognition, where observa-
tions are incrementally revealed.

This paper advocates goal mirroring, an online goal
recognition approach which works in continuous do-
mains. Like [Ramı́rez and Geffner, 2010], goal mirroring
uses a planner as a black box, to generate recognition
hypotheses. However, it is designed to efficiently han-
dle incremental, continuous observations. It also uses a
different ranking heuristic than earlier work, which we
show is significantly superior in continuous domains.

We describe goal mirroring in detail, and report on
extensive experiments over hundreds of goal-recognition
problems, in two challenging continuous domains (navi-
gation goals, sketch recognition). We empirically explore
two key factors in recognizer performance: the planner
used, and the ranking heuristic. Finally, we contrast the
recognition results to those achievable with library-based
methods and show that goal mirroring, utilizing no plan
library, can recognize plans just as successfully.

2 Related Work
Prevalent approaches to plan- and goal- recognition
rely on a dedicated plan library as the basis for the
recognition process [Sukthankar et al., 2014]. The
plan library efficiently represents all known plans to
achieve known goals; methods vary in the representation
and inference algorithms used: action decomposition
graphs [Kautz and Allen, 1986; Avrahami-Zilberbrand
and Kaminka, 2005], Bayesian networks [Charniak and
Goldman, 1993; Albrecht et al., 1997], hidden Markov
model variants [Blaylock and Allen, 2004; Bui, 2003],
conditional random fields [Liao et al., 2007; Vail et al.,
2007; Liang et al., 2015], grammars [Pynadath and Well-
man, 2000; Geib and Goldman, 2011], etc. The use of a
library limits recognition capabilities to known plans. If
the observations are of an unknown plan, even leading
to a known goal, library-based methods fail. Also, when
we wish to add to the set of recognizable goals, we need



to also insert plans for recognizing the new goals into the
library (e.g., manually or by learning), in order for the
goals to be recognized.

Some prior investigations have begun to explore al-
ternative methods. Hong [2001] uses a specialized repre-
sentation and online algorithm to generate possible goals
without a plan library. Ramı́rez and Geffner [2009, 2010]
advocate plan recognition by planning, where an unmod-
ified planner is used as a black box to generate recogni-
tion hypotheses that match the observations. A heuristic
comparison between the generated plans and an optimal
plan that ignores the observations is used to probabilis-
tically rank the hypotheses. Both of these approaches
work in discrete domains only (e.g., using PDDL-capable
planners), where there is no uncertainty in the observa-
tions, and observed actions are discretely defined. The
latter may also be inefficient in online recognition, where
observations are incrementally revealed.

Inspired by these investigations, goal mirroring uses a
planner (as a black box) to generate plan and goal hy-
potheses on-the-fly. It departs from earlier work by ad-
dressing continuous domains, providing an efficient al-
gorithm for online recognition and a different ranking
heuristic, which we show improves recognition results.

3 Goal Recognition

We begin by giving a clear definition of the goal recogni-
tion problem (Section 3.1) proceeded by Section 3.2 with
an in-depth portrayel of our the mirroring algorithm.

3.1 Problem Definition

We define R, the goal recognition problem in continuous
domains as a tuple R = 〈W,G, T, To, O,M〉. W ⊆ Rn is
the world in which the recognition problem is contained.
This includes the familiar work area in Rn as defined
in standard motion planning [LaValle, 2006]. For robot
poses on flat ground, for instance, W is the space of
possible positions and angle in each position (i.e., defined
over R3). It may also include additional dimensions, such
as velocity, color (to capture drawings), etc.
G is a set of k ≥ 1 goals g1, . . . , gk; each goal gj ⊂ W

represents a subset of the space, e.g., a point location, a
polygon drawn in some color, a trajectory, etc. T limits
the duration interval [0, T ] in which the observed agent
was active, whether observed during this time or not.

The set of observations O is defined for a subset
To ⊆ [0, T ]. To may include specific times in which ob-
servations were made, or continuous intervals of time in
which observations were made. We define the set of ob-
servations O : To → 2W as a mapping such that for any
observation time t ∈ To, there exists O(t) ⊂W , i.e., each
observation is of a specific subset of the work area, e.g.,
a point, an edge, a trajectory segment which includes
velocity, etc. Note that this permits both discrete and
continuous observations.

Given the problem R, the task is to choose a specific
goal g ∈ G that best matches the observations O. We
formulate this intuition by including M , a set of plans,

in the definition of R, where at least one of the plans is
assumed to account for the observations in O. Formally,
a plan mi

g, indexed by a goal g ∈ G, with i ≥ 1, is a

mapping mi
g : [0, T ] → 2W from a time stamp t ∈ [0, T ]

to a subset of the work area W , such that mi
g(1) = g.

In other words, a plan is a procedure that incrementally
generates subsets of W , until the final subset at t = 1
is one of the goals g ∈ G. Intuitively, we are describing
a plan by its effects on the world. This general defini-
tion of a plan avoids the question of the mechanisms by
which effects are generated, and thus necessarily admits
different approaches to representing the plan set M (as
we discuss below).

A matching between a specific plan m ∈ M and
the observations O is defined by the matching error
e(m,O) =

∫
t∈To

D(O(t),m(t)) for a distance metric D,

such that D ≥ 0 for all t ∈ To (i.e., for all observa-
tions), and specifically D = 0 if O(t) = m(t). m is said
to perfectly match the observations if for any t ∈ To,
m(t) = O(t), in which case e(m,O) is 0.

A solution to the goal recognition problem R mini-
mizes e(mg, O); it is a member of the subset SR ⊆ G
minimizing e(ms, O): SR = {s| argmins∈G e(ms, O)}.

In general, this condition (minimizing e(mg, O)) is
necessary, but not sufficient. Any number of potential
plans, especially in continuous domains, may perfectly
match the observations, but differ in the unobserved
parts. In general, a plan can perfectly match the obser-
vations, and then still achieve any goal g. For instance,
in navigation goal recognition, suppose we observe points
leading to a goal in the north. A path planner may gen-
erate a path that goes through all the observed points,
and then doubles back to the south. Such a path will
perfectly match all observations, but add an arbitrary
suffix for any goal g.

This necessary—but insufficient—condition can be un-
derstood as a result of the abductive nature of plan-
recognition; reasoning to the best explanation out of a
potentially infinite set of explanations cannot be done
without defining the necessary condition that allows to
filter out non-explanations. This is what the condition
above does. A second—separate—condition must define
sufficiency; we discuss this in Section 3.2.

Online goal recognition. In this paper, we specifi-
cally address the online version of this problem, where
the set O is revealed incrementally. Specifically, we
set t = 0, and increment it until t = T . For every
value of t, we may induce a goal recognition problem
R(t) = 〈W,G, t, T t

o , O
t,M t〉, where T t

o , O
t,M t are de-

fined as the respective subsets of To, O and M induced
over the duration [0, t]. We denote the solution of R(t)
by SR(t). The objective of the online goal recognition
problem is to minimize t ∈ [0, T ] such that SR(t) = SR.

In principle, it is possible to naively solve the online
goal recognition problem by repeatedly calling an offline
goal recognizer with the problem R(t), as t increases



and the latest new observation Ot(t) is made available.
However, this is quite inefficient, as the growing set Ot

is processed anew with every call. Thus the challenge is
to determine an efficient solution.

3.2 Online Goal Mirroring

Goal mirroring is an approach to goal recognition in
continuous domains, inspired by mirroring processes hy-
pothesized to exist in primate brains [Rizzolatti, 2005].
The mirror neuron system gives humans the ability to
infer the intentions leading to an observed action using
their own internal mechanism. Therefore, the key to goal
mirroring lies in the use of a planner in the recognition
process. Instead of maintaining a library of plans (the
set M), a planner is used to dynamically generate plans
m ∈M as needed, without the need for explicit represen-
tation of the library M . This raises two key challenges.

First, the planner needs to generate a plan mg that
agrees with the observations, in order to minimize the
matching error e(mg, O) defined above. It therefore
needs to fold the observation history into mg. For
STRIPS-like discrete planners, Ramı́rez and Geffner
[2010] have shown an elegant way to do this, by changing
the domain theory used by the planner. But in contin-
uous spaces, e.g., by most motion planners, this cannot
be done. We therefore use an alternative, which approx-
imates an ideal mg that includes the observations, by
appending a prefix plan (composed of the observations)
and a suffix plan (composed of a new generated plan,
from the latest observed state to the goal g). We denote
the suffix plan m′

g.
The second challenge is that the plan mg must also

meet a sufficiency condition. Thus generating a plan
mg that agrees with the observations is no guarantee
that the goal g is the intended goal. This is especially
true in continuous domains, where infinite paths can pass
through observed points.

To address this, goal mirroring is biased towards ratio-
nality. It uses the planner to also generate m̄g, an ideal
plan that ignores all observations, and simply reaches g
from the initial observed state, denoted O(∅). If the cost
cost(mg)—where mg is made from the observations thus
far and the suffix planm′

g—greatly exceeds the cost(m̄g),
we rank g lower (or eliminate it from SR). The under-
lying assumption here is that the ideal plan is optimal;
if the observed plan is far from the ideal plan, then the
agent must not be rational, and is likely pursuing an
alternative goal altogether.

Algorithm 1 integrates these insights for online goal
mirroring. It accepts as input a recognition problem R
and a planner to be used as a black box. It then works
as follows. First, In lines 1–2 we call the planner to
compute the plan m̄g (initial state O(∅) to each goal g,
ignoring observations). This avoids recomputation of m̄g

with every loop iteration.
The loop in lines 3–7 is comprised of two steps. The

first step (lines 4–6), centers on approximating the cost
of an ideal plan mg (which folds the observations), from

the cost of the prefix (maintained by ∆), and the cost of
a suffix plan m′

g.
The second step then ranks the goal hypotheses. For

each goal, line 7 assigns a score, which is the ratio of the
costs of m̄g and the approximated mg. As differences
between them grow, the ratio of the costs decreases, re-
sulting in a lower score. In line 8, we transform these
scores into probabilities P (G|O) via the normalizing fac-
tor η = 1/

∑
g∈G score(g).

Algorithm 1 Online Goal Mirroring (R, planner)

1: for all g ∈ G do
2: m̄g ← planner(W, g,O(∅))
3: for t = 0 to T do
4: ∆← cost(Ot)
5: for all g ∈ G do
6: m′

g ← planner(W, g,Ot(t))
7: score(g)← cost(m̄g)/(∆ + cost(m′

g))
8: P (G|O(t))← η · score(g)

The choice to use this ratio in line 7 is not arbitrary.
There exists evidence that human estimates of intention-
ality in action are heavily biased towards motion that is
efficient (or rational), in the sense of preferring hypothe-
ses that do not deviate from the optimal, rational plan
from the initial state to the goal state. A cost ratio be-
tween this plan (m̄g if the planner is optimal) and the
observed plan mg is known to agree with human judge-
ment of intentions [Bonchek-Dokow and Kaminka, 2014].

A different heuristic, though motivated by the same
principle, is suggested by Ramı́rez and Geffner [2010]:
they propose looking at the difference in costs, i.e.,
a score inversely proportional to |cost(mḡ) − [∆ +
cost(m′

g)]|. We believe that a difference may be biased
when dealing with larger cost values, where small dif-
ferences may still be very large and skew results. For a
contrast between the two heuristics see Section 4.

4 Evaluation
We empirically evaluate goal mirroring in two challeng-
ing continuous domains, over hundreds of goal recogni-
tion problems. In Section 4.1 we discuss the generality of
the approach by contrasting implementations in different
domains for recognizing 3D navigation goals, and hand-
drawn sketches. Then we use the 3D navigation domain
to evaluate the effects of the selection of the planner
used in recognition , on the recognition results and run-
time (Section 4.2) and the effects of different heuristic
approaches (Section 4.3). We contrast goal mirroring
with a method based on a plan library (Section 4.4) and
draw lessons as to the advantages and disadvantages of
goal mirroring. Finally, we discuss the sensitivity of the
recognition approach, by contrasting results in easier and
harder goal recognition problems (Section 4.5).

4.1 Two goal mirroring implementations
We implemented goal mirroring both for sketch recogni-
tion and navigation goal recognition.



Recognizing sketches of regular polygons. The
task is to recognize 2D hand-drawn regular polygons.
We had three people draw equilateral triangles, squares,
pentagons, hexagons, septagons, and octagons, for a to-
tal of 18 recognition problems. Shapes were drawn in
various scales and rotations. Naturally, hand drawings,
even under ideal conditions, reflect quite a bit of inaccu-
racy.

The observations, of the edges incrementally added,
were generated by using machine vision to analyze the
drawings. Specifically, we used OpenCV to implement
a Hough-transform edge detector[Duda and Hart, 1972]
and to identify coordinates of the initial and last points
in the drawing, marking the limits of the initial and cur-
rent observed edge. To overcome scanning noise and
drawing inaccuracy (which causes the Hough transform
to generate multiple candidate edges) hierarchical clus-
tering [de Hoon et al., 2004] was used to filter through
false edges giving us a correct estimate as to the actual
number of edges.

For the mirroring process, we developed a shape-
drawing planner, which takes a partial drawing (as an
initial state), and a goal shape specification, and at-
tempts to complete the drawing to the goal shape specifi-
cation (or report failure if cannot be done, e.g., attempt-
ing to complete a 4-edge open polygon into a triangle).
In this domain, goal hypotheses are ranked according to
the ratio between the ideal internal angle size for the
goal shape, and the measured internal angle, implied by
each newly-added edge (Algorithm 1, line 7). Figure 3
(left), contrasts the results of this version of the sketch
recognizer with a version of the recognizer which only
rules out shapes inconsistent with the observations (i.e.,
rules out triangles if four edges have been observed).

3D Navigation Recognition. We implemented goal
mirroring to recognize the goals of navigation in 3D
worlds. Here, we used four off-the-shelf planners (RRT*,
TRRT, RRTConnect, KPIECE1), available as part of
the Open Motion Planning Library (OMPL [Şucan et
al., 2012]). We utilized these planners in the existing
cubicles environment and the default robot(Figure 1).
Here, the cost measure (Algorithm 1, lines 4 and 7) is
simply the length of the path.

To generate goal recognition problems, we arbitrarily
selected 11 points spread out relatively evenly over the
environment(Figure 1-left). We then generated observed
paths from each point to all others, for a total of 110 goal
recognition problems. Each problem had between 20 and
76 observed points. Figure 3 contrasts the results of
three versions of the navigation goal recognizer on an
example problem of recognizing the navigation goal of
a moving robot in the environment. Two of the ver-
sions utilize different planners and rank according to the
heuristic and another naive version, which does not rank
the observations or utilize a planner. Seeing as this is a
continuous domain, and at all times, every one of the
goals is possible, there is no elimination process and the
results of this process are static; i.e. at all times, each of

the goals has an equal chance of being chosen.

Figure 1: Left: Cubicles environment, robot and goals.
Right: Cubicles environment, robot and cluster goals

Recognition results in two domains

We implemented goal mirroring in both domains,
demonstrating the general applicability of our technique,
and hoping to gain insight as to its strengths and weak-
nesses. To do this, across a wide variety of observation
sequences, domains, and recognition problems, we need
quantitative recognition performance measures that nor-
malize for observation length, the size of the goal library
G, and are neutral with respect to the domain. We de-
fine three such measures below, using example runs from
the two domains to assist in the presentation.

Measuring recognition results. Let us examine the
recognizer output on a specific problem. The two figures
in Figure 2 show the recognition results in both domains,
each subfigure contrasting two different experiment con-
ditions on the same recognition problem. In each figure,
the X-axis marks the observations coming in incremen-
tally. The Y axis measures the rank of the correct goal
hypothesis among all the goals ranked by the recognizer,
thus lower is better (rank 1 indicates that the correct
goal was ranked as the top hypothesis). Naturally, this
rank is only analyzed post-hoc. The recognizer does not
have access to the ground truth during the run.

For instance, in Figure 2 (left), receiving 6–9 obser-
vations, the correct goal was ranked 5 (out of 10) by
the TRRT-based recognizer; it was ranked 8 by the
KPIECE1-based recognizer. As more and more obser-
vations come in, it is only natural that the recognition
problem becomes easier and easier, and indeed towards
the end of the observation sequence, the two recogniz-
ers converge to ranking the correct goal at the top of
their ranking (i.e., rank 1). Likewise in the right fig-
ure, the two variant recognizers vary in how they rank
the correct goal among all hypothesized goals, but show
the same trend of converging towards the correct goal as
more observations come in.

Such graphs can be drawn for any online recognition
problem instance, to compare the performance of differ-
ent recognizers. Recognizers may vary in three measures:
(1) the time (measured by number of observations from
the end) in which the recognizer converged to the correct
hypothesis (including 0 if it failed); (2) the area under
the curve drawn in this graph, which gives a measure



of the false-positive response (greater area means recog-
nizer tended to rank the correct hypothesis lower, farther
from top); and (3) the number of times they ranked the
correct hypothesis at the top (i.e., rank 1), which indi-
cates their general accuracy.

For example in Figure 2 (left), the TRRT-based recog-
nizer converges at observation 46, i.e., top 19.3% of the
observations, whereas the KPIECE1-based recognizer
converges at observation 51, i.e., was slower to converge.
Normalizing for the observation sequence length, to al-
low comparison across different recognition problems, we
measure the normalized convergence of the TRRT rec-
ognizer at 19.3%, while the KPIECE1 recognizer is mea-
sured at 10.5%. Higher results indicate earlier conver-
gence, thus better.

Measuring the area-under-curve (auc) gives us a mea-
sure of the uncertainty the planner encountered during
the recognition process. Here, a lower value is considered
better indicating that the recognizer was closer to the
correct ranking along most of the process. For instance,
in Figure 2 (right) it is clear that the auc for the ranking
recognizer is smaller than for the non-ranking recognizer.
We can again normalize to allow comparison between
different recognition problems, even normalizing for the
number of potential goals considered. We compute the
ratio of the auc to the worst-case scenario, where a rec-
ognizer consistently ranked the correct hypothesis as the
lowest rank (i.e., at rank=|G|). A smaller percentage in-
dicates less false positives considered by the recognizer.
To be consistent with the other measures (where a larger
result is better), we consider the complementary normal-
ized value (1-normalized auc). Note that results in the
two domains can be contrasted here on the same scale,
as the normalization process eliminates differences due
to number of potential goals (10 in the navigation do-
main; 6 in the sketch domain). Figure 2 (left) shows
the area under the curve for the TRRT planner will be
significantly smaller than the area under the curve for
the KPIECE planner signifying that TRRT was closer
to the correct ranking along most of the process.

Finally, counting the amount of times the planner
ranked the correct goal as the top hypothesis (rank=1)
gives us an overall measure of the reliability of the rec-
ognizer. The more frequently the recognizer ranked the
correct hypothesis at the top, the more reliable it is,
hence a larger value is better. We again normalize us-
ing the length of the observation sequence. In Figure 2
(left), the TRRT recognizer ranked the correct goal at
the top 29 times, significantly more than KPIECE which
ranked it only 19 times. Here, TRRT is the better rec-
ognizer in this regard. For the shape recognition the
results here are 2 times for the ranking recognizer vs.
once for the non-ranking recognizer. Because the length
of observation sequence is only 7 (the number of edges
of a septagon, which was the shape being drawn), this
proves to be very significant.

Results. Figure 3 shows the results, in terms of the
three criteria discussed, in the two domains. Figure 3(a)
contrasts the results in the sketch recognition domain,

Figure 2: Left:TRRT- and KPIECE- based recognizer per-
formance for one path containing 57 observations. Right:
Performance of ranking and non-ranking recognizer observ-
ing a septagon being drawn.

when using the ranking ratio (line 8, Algorithm 1), and
when not using any ranking (only filtering inconsistent
hypotheses). In both cases, the shape-drawing planner
described above was used. Figure 3(b) shows the results
for non-ranking and ranking recognizers, but here also
showing the results when using different planners as the
basis for the recognition: TRRT vs RRTConnect. In
both figures, higher columns denote improved results.
Error bars mark the standard error.

(a) Sketched Shapes (b) Navigation Goals

Figure 3: Recognition results in two domains.

We draw several lessons from these results. First, it is
clearly possible to successfully utilize goal mirroring in
different domains, on challenging tasks. Second, the two
critical factors that directly and significantly impact the
recognition success are: the choice of the planner (TRRT
is significantly better than RRTConnect), and the use of
the ranking heuristic (in the sketch domain, the non-
ranking procedure was able to produce some results; in
the navigation domain, because no plan can ever be rules
out in an online scenario, it fails completely). We explore
these factors in the following sections, using the naviga-
tion domain (where we have a selection of planners).

4.2 The effects of planner choice

We experimented with four off-the-shelf OMPL planners
to evaluate their effect on recognition (thus, with a fixed
ranking heuristic, as shown in Algorithm 1). KPIECE1
is a tree-based geometric planner that uses multiple lev-
els to guide a frontier-based exploration of the continu-
ous state space [Şucan and Kavraki, 2010]. The other
three planners are from the RRT (Rapidly-exploring
Random Trees) family [Nieto et al., 2010]. Here, the
tree is constructed incrementally from samples drawn
randomly from the search space and is biased to grow
towards large unsearched areas. The planners differ in
their optimality guarantees: RRT* is an optimized plan-
ner that guarantees asymptotic optimality: it will utilize



the full duration of time allotted to it to generate incre-
mentally improving solutions. TRRT only guarantees
asymptotic near- optimality, preferring shorter solutions.
RRTCONNECT and KPIECE1 provide no optimality
guarantees whatsoever. By comparing the results of all
of these planners we can get an assessment as to the
power of our heuristic approach.

Figure 4(a) shows the recognition results when uti-
lizing the various planners in goal mirroring in the 3D
navigation domain. Each of the columns shows the mean
recognition results over the same set of 110 recognition
problems, with error bars marking the standard error.
We see that TRRT and RRT* are clearly and signifi-
cantly better for goal recognition than RRTConnect and
KPIECE. Indeed RRT* and TRRT, which tend to pro-
duce paths closer to optimal, are nearly indistinguishable
from each other in terms of recognition success (though
TRRT is a bit better).

However, the two top planners differ from each other
very much in run-time. Every call to the planners was
limited to one second of run-time. But given that a plan-
ner is called with each new observation, for each one of
the goals, the mean total time can grow very quickly.
Figure 4(b) shows the mean running times of the plan-
ners over the entire set of 110 recognition problems (i.e.,
a higher value is worse). The results are shown as per-
centage of the total time made available to the planners.
As specified, the RRT* planner uses the full time allot-
ted to it and reaches 100%. Following is KPIECE, with
34% and then TRRT and RRTCONNECT with 28% and
22%. Indeed, we see that TRRT is the second quickest,
and is beat only by RRTConnect.

(a) Recognition success. (b) Runtime (sec).

Figure 4: Comparison of planner performance.

Thus an one conclusion is that recognition results im-
prove very much with the optimality of the planner uti-
lized in goal mirroring. Moreover, in the 3D navigation
domain, TRRT seems to offer a remarkable choice for
this task: It produces good results, while being very fast.

4.3 The effects of the ranking heuristic

We have seen in Figure 3 that in both domains, the use
of the ranking heuristic we proposed earlier improves the
results. The comparison between the two domains yields
an interesting insight as to differences between types of
recognition problems. In the sketch recognition domain,
recognition problems can be ruled out, as soon as the
number of observed edges is greater than the number of
edges in a hypothesized goal shape. This is why the non-
ranking recognizer, which chooses arbitrarily between all

goals consistent with the observations, still manages to
provide measurable results. But in the navigation do-
main, goals cannot be similarly ruled out from being
considered. Even if the observed agent has already nav-
igated and reached a target goal, it is always possible
(though unlikely) that it is just taking a long way out
towards a different (and much farther goal). Here, then,
the ranking heuristic is critical.

We therefore want to contrast the use of the ranking
heuristic we propose (ratio of costs), to that of [Ramı́rez
and Geffner, 2010] (difference of costs). Figure 5 shows
the results when applying the different heuristics to all
four recognizers, based on the different planners. The
figure shows eight columns for each recognition perfor-
mance measure: four columns measuring the results of
recognizers using the ratio heuristic (using the four plan-
ners), and four (marked G) for the same, but using the
difference heuristic. The results show that in the navi-
gation domain, the ratio heuristic is clearly superior. We
believe that this is because paths (to different goals) can
vary much in length. The difference heuristic compares
absolute differences between paths of different lengths,
while the ratio heuristic compares relative differences.

Figure 5: Comparison of different heuristics.

4.4 Mirroring vs. library-based methods

Mirroring has the principled advantage over library-
based methods in terms of storage, and in being able
to handle any arbitrary initial observed state; no need
to add possible plans to a plan library. However, this
is also a disadvantage, in principle: Mirroring does not
utilize prior knowledge even when it can be made avail-
able. To evaluate this aspect, we contrast mirroring with
recognition by a hidden Markov model (HMM), a popu-
lar library-based technique, often used as a standard for
comparison (see Section 2). Testing the HMM on plans
unknown to it is a valid, but futile exercise, where the
superiority of goal mirroring would be obvious.

We therefore evaluate HMMs vs mirroring when the
plans are known to the HMM. To do this, we first needed
to discretize the navigation problem. We divided the 3D
environment into a discrete robot-size cell grid. Each
grid cell corresponded to a potential state in a hidden
Markov model. We then used data from planner runs as
data for training HMMs, one for each of the 110 recog-
nition problems. In particular, since optimal generated
paths seem to have done well (see above), we used 20



paths generated by the asymptotically-optimal RRT*.
In this way we enhanced the HMMs prediction ability
since most of the paths tend to be rather similar and very
close to optimal, and also put it on the same playing field
as our RRT* planner for future comparison. We had to
change the path representation to contain the available
states by mapping each of the points on every path to
one of the cells of the grid. Thus the states and obser-
vations are both discussed in the same language. So we
created a specialized HMM, trained on data proven to be
useful, for each recognition problem. The HMM train-
ing and recognition were carried out using the standard
MATLAB HMM package.

We contrasted the HMM performance with the results
obtained by running TRRT with a time limit constraint
of 10 seconds (Figure 6(a)). Even without any prior
knowledge, mirroring is on-par with the HMM results,
even better in the area measure.

Obviously, as more prior knowledge is available, this
can change. Indeed, re-training the HMMs with 95
examples for each path, the HMM recognition results
improved markedly. Our conclusion is that mirroring
should be preferred when relatively less data is available,
and when the number of possible plans is very large (or
infinite, as in these two domains).

4.5 Sensitivity to recognition difficulty

Finally, we wanted to evaluate the sensitivity of the re-
sults shown above to the hardness of the recognition
problems. We therefore added 9 goal points to the recog-
nition problems in the navigation domain (e.g., now 19
potential goals in each recognition problem, up from 10).
This means a total of 380 recognition problems (Fig-
ure 1,left) (Figure 1,right). Moreover, we added these
extra 9 points specifically in close proximity to some of
the preexisting 10 points, such that navigating towards
any one of them appears (to human eyes) to be just as
possible as any other.

Figure 6(b), shows the deterioration (%) in each of the
recognition criteria, when running the recognizers using
the different planners on the 380 harder problems. A
lower result here is better, indicating less deterioration in
performance. For the area and ranked-first measures, all
planners deteriorated equally. However, TRRT proved
more robust than others in the convergence measure.

(a) Goal mirroring vs HMM (b) Deterioration in recogni-
tion, hard problems

Figure 6: Additional experiment results.

5 Summary
We have presented online goal mirroring, a goal recogni-
tion approach for continuous domains that does not rely
on a plan library, but instead uses a planner to gener-
ate recognition hypotheses that are continually matched
against incremental observations. We evaluated goal
mirroring in extensive experiments in two separate do-
mains (navigation goals, sketch recognition) showing
that goal mirroring is applicable to completely differ-
ent domains. The experiments showed that two factors
impact recognition success: the optimality of the plan-
ner used, and the hypothesis ranking heuristic. The ex-
periments additionally demonstrated that mirroring can
recognize plans as successfully as library-based methods.
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