
Abstract 

We describe preliminary work toward applying a 

goal reasoning agent for controlling an underwater 

vehicle in a partially observable, dynamic 

environment. In preparation for upcoming at-sea 

tests, our investigation focuses on a notional 

scenario wherein a autonomous underwater vehicle 

pursuing a survey goal unexpectedly detects the 

presence of a potentially hostile surface vessel. 

Simulations suggest that Goal Driven Autonomy 

can successfully reason about this scenario using 

only the limited computational resources typically 

available on underwater robotic platforms. 

1 Introduction 

Goal Reasoning (GR) is a form of planning and acting in 

complex (e.g., uncertain, dynamic, partially observable) 

domains. A GR agent can deliberate about and alter its own 

goals at appropriate times, such as when the environment 

behaves unexpectedly. The field of GR has received 

increased focus in recent years but most GR agents are not 

embodied in a robotic platform. Conversely, task-driven 

planning agents have been investigated for use in 

underwater and other unmanned vehicles (e.g., [Cashmore 

et al., 2015]).  However, these agents do not employ GR 

techniques and therefore cannot adequately adapt to 

unexpected changes in their environment. 

The Goal Driven Autonomy (GDA) model [Klenk et al., 

2013] of GR monitors plan execution for discrepancies 

between expected states and observations (i.e., processed 

sensor readings from the environment). When a discrepancy 

is detected, the agent constructs a consistent explanation, 

encompassing its observation history and the discrepancy, 

which may improve its knowledge of the world by inferring 

features of the state that cannot be directly observed. 

We report on simulated and preliminary results for an 

application of GR to a robotic vehicle.  We describe initial 

at-sea trials with a GDA agent controlling an Iver2 

autonomous underwater vehicle (AUV) [OceanServer 

2012]. We are testing the decision-making capabilities of 

this agent in situ, providing the AUV with challenges in the 

form of a simulated unmanned surface vehicle (USV) 

unexpectedly traversing the AUV’s area of operations while 

the AUV performs its mission. 

2 Goal Driven Autonomy 

GDA (Figure 1) is a model for online planning with 

reasoning about goal formulation and management 

[Molineaux et al., 2010].  It extends Nau’s [2007] model of 

online planning, using the Controller to create and pursue 

new goals when unexpected events occur in complex 

domains.  

The GDA Controller uses the Planner to create a plan to 

achieve the current goal 𝑔 from the current state 𝑠0.  The 

Planner outputs to the Controller a sequence of actions 

〈𝑎1, … , 𝑎𝑛〉 to execute, and a corresponding sequence of 

expected states 〈𝑥1, … , 𝑥𝑛〉, where 𝑥𝑛 is a goal state for 𝑔. 

As the Controller executes the plan in the state transition 

environment, it performs a four-step cycle to manage goals 

in response to unexpected events: 

1. Discrepancy detection:  After the Controller 

executes action 𝑎𝑖, the Discrepancy Detector 

compares the new observed state 𝑠𝑖 to the 
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Figure 1: The Goal-Driven Autonomy Conceptual Model 



corresponding expectation 𝑥𝑖. If they differ, a 

discrepancy has occurred and the GDA model 

attempts to explain and resolve it. 

2. Explanation:  If discrepancies between the new 

state and the expectation are detected, the 

Explanation Generator attempts to create an 

explanation of the discrepancies. 

3. Goal formulation:  The Goal Formulator creates 

new goals that are appropriate given the 

explanation. 

4. Goal management:  Finally, the Goal Manager 

prioritizes and selects among the Pending Goals, 

including new goals from the Goal Formulator.  

The selected goal is then given to the Planner to 

generate a new plan and expectations. 

3 AUV Autonomy Model 

In our control architecture, the GDA Controller monitors the 

AUV’s state and directs it to perform sensing and navigation 

tasks, delegating them to lower-level control components. 

To address the challenges of motion control in dynamic 

environments that may be only partially known a priori, we 

employ the reactive MOOS-IvP autonomy architecture 

[Benjamin et al. 2010], a widely used, open source robotic 

control framework. MOOS is a message-passing suite with 

a centralized publish-subscribe model. The MOOS 

application IvP Helm is a behavior-based controller that sets 

navigation parameters to generate collision-free trajectories, 

using an interval programming technique that optimizes 

over the selected behaviors’ objective functions. 

The GDA Controller executes plans by activating, 

deactivating, and changing parameters of IvP Helm 

behaviors. (While IvP Helm can alter behaviors reactively, 

it cannot deliberate about what goal the vehicle should 

pursue, which is the focus of GDA.) Figure 2 depicts our 

agent architecture, which includes the Front Seat vehicle 

control system provided by the manufacturer (OceanServer).  

For these trials, we employ: the PHOBOS planner 

[Wilson et al., 2014]; state comparison for discrepancy 

detection; a C++ implementation of DiscoverHistory 

[Molineaux and Aha, 2015] for explanation; rule-based 

scripts for goal formulation; and the goal manager selects 

the most recently-formulated goal.   
 

4 Related Work 

Much prior work in AUV control focuses on task-level 

planning that can be carried out by motion controllers.  For 

instance, McMahon and Plaku [2016] generate dynamically-

feasible collision-free motion plans that satisfying multiple 

goals specified using Regular Languages. Cashmore et al. 

[2014] describe a PDDL planner for underwater inspection 

tasks that can update its world model and replan when new 

information is discovered.  Karpas et al. [2015] describe an 

extension to the Pike online executive that, while not 

focused on the AUV domain, permits a vehicle to relax 

temporal bounds on plan execution by teaming with a 

human operator. Unlike our approach, these do not 

incorporate a model of goal reasoning. 

BDI architectures may provide reactive plan management 

facilities. For instance, the Jason interpreter for AgentSpeak 

[Bordini and Hübner 2006] permits an agent to select new 

plans in response to external events. Jason provides a focus 

on multiagent systems, whereas our system is focused on 

control of a single agent. Further, while Jason provides 

events that describe the most recent changes in the agent’s 

beliefs or goals, our architecture provides explanatory 

reasoning, over the agent’s history, to identify root causes of 

exogenous events and consequent changes to the agent’s 

beliefs. Although we employ rule-based goal selection in 

this work, our GDA architecture provides the capability to 

select goals by deliberating using motivators [Wilson et al., 

2013], whereas Jason only provides rule-based nomination 

from a plan library. 

Goal reasoning has been applied in a number of domains, 

including Tactical Action Officer decision making 

[Molineaux et al., 2010], the game of Starcraft [Weber et 

al., 2012], interactive storytelling [Coman et al., 2015], and 

cyber defense [Goldman et al., 2015]. Studies of specific 

techniques in goal reasoning have focused on, among 

others, expectation generation [Dannenhauer and Muñoz-

Avila, 2015], goal formulation [Wilson et al., 2013, Jaidee 

et al., 2011], explanation generation [Molineaux and Aha, 

2015], goal prioritization [Young and Hawes, 2012], plan 

recognition incorporating goal knowledge [Vattam and Aha, 

2015], and formal models of goal reasoning as a process 

[Roberts et al., 2014, Cox 2015]. Our focus in this paper is 

on AUV control. 

Goal reasoning has had some limited application for 

robotic control. Roberts et al. [2015] examine the use of 

goal reasoning for coordinating teams of robots in disaster 

recovery scenarios. Wilson et al. [2014] propose a planner 

and expectation model for AUV control with goal 

reasoning. Cox et al. [2016] incorporate a ROS interface 

into the MIDCA metacognitive architecture for 

Figure 2: Our Iver2 AUV Autonomy System 



communication with a Baxter robot. In contrast, we plan to 

conduct at-sea trials with the Iver2 robot under GR control. 

5 Demonstration 

The purpose of this exercise is to demonstrate our GDA 
agent’s ability to control an AUV in a basic scenario 
involving unexpected observations during execution. 

5.1 Vehicle 

The target vehicle for our initial demonstrations is an 

OceanServer Iver2 AUV.  The Iver2 vehicle is a low-cost 

lightweight torpedo shaped AUV. It has a diameter of 14:7 

cm, a length of 127 cm, weighs approximately 19kg 

(depending on the sensor configuration), and has a 

maximum speed of about 2.0 m/s. To match the MOOS-IvP 

simulator’s dynamics with this vehicle, we use the default 

MOOS-IvP values for buoyancy rate, max acceleration and 

deceleration, depth rate, and turn rate. These values have 

been shown to accurately capture the dynamics of the AUV 

in field trials [McMahon and Plaku, 2016]. 

5.2 Domain 

The agent’s PDDL domain description includes: the 

vehicle’s location, depth, speed, and heading; notional 

processed input from passive sonar sensors (classified as 

“engine noise” or “active pings”); actions for traversing to a 

waypoint and surveying a region (causes the vehicle to 

execute surveying motions, but does not presently engage an 

active sonar or receive sonar responses); and exogenous 

events for various changes in state owing to the reactive 

control layer or the environment. For clarity we do not 

present an exhaustive list of actions or events and describe 

only those that are relevant to the goal reasoning process. 

 We are conducting a series of trials, wherein the vehicle 

is tasked with surveying a pre-defined region (the mission 

goal) and then returning to a “home point” once the goal is 

complete. A “safe point” is defined as a location to which 

the vehicle can retreat if threatened. A simulated second 

vehicle with randomized start and end points may threaten 

the AUV and cause it to retreat if the AUV detects its 

presence. These elements are illustrated by the example 

problem shown in Figure 3. This example depicts the 

AUV’s area of operations, the survey region, the AUV 

launch point, and the endpoint regions for the simulated 

USV. 

5.3 Mission Description 

The AUV starts at its launch point near the shoreline at the 

Naval Research Laboratory’s Chesapeake Bay Detachment 

(Figure 3). Its initial goal is to perform a simulated survey 

of the ocean floor in a target location.  The AUV’s speed is 

limited to 1.5 m/s in this scenario.  Available goals for the 

AUV are shown in Table 1, and its initial state 𝑠0 is 

described in Table 2. The “ranged” values in Table 2 are 

provided via the PHOBOS planner’s ability to produce 

acceptable ranges of expected values (for each action), 

which decreases false discrepancy rates. 

The simulated USV starts at a randomly-chosen point in 

one of two endpoint regions, located along the shoreline 

north and south of the AUV’s start position (Figure 3).  The 

USV’s start and end points are chosen from a uniform 

distribution over these areas.  The USV’s maximum speed is 

5 m/s. 

The USV is either in a “hostile” mode, using active sonar 

pings which would correspond to a vessel seeking the AUV, 

or in “neutral” mode, not emitting active sonar.  Simulated 

Figure 3: An Example Problem for the AUV Test Domain 

Fluent Name Parameters Value 

underway  false 

mission-started  false 

area-surveyed area1 false 

home-location 5, 0 true 

x-pos  (range -10 20) 

y-pos  (range -15 15) 

speed  (range 0 1) 

heading  (range 0 360) 

depth  (range 0 0.5) 

safe-point-location 50, -50 true 

engine-noise  false 

ping-noise  false 

contact-in-area  false 

hostile-contact-in-area  false 

 Table 2: Initial state for the test mission (x-y 

coordinates are aligned with the cardinal 

directions and measured from the launch point). 

Goal Name Parameters Purpose 

go-home  Drives AUV to launch point 

go-to-point ?x (x-coord) 

?y (y-coord) 

Drives AUV to specified 

coords 

sweep-area ?s (predefined area) 

?l (lane width) 

Performs a survey in 

specified region 

wait  Do nothing 

 

Table 1: Available agent goals for the test mission 



pings are emitted once per second and have a detectable 

radius of 60m. Whether the USV is hostile or neutral, it 

emits engine noise with a detectable radius of 80m. This 

choice of endpoint region and USV speed results in the 

USV being (potentially) detected at a different time and 

relative position in each trial. The aim of introducing such 

variability is to demonstrate the robustness of the GDA 

Controller to different discrepancies. 

The AUV transits from its launch point to a 100x100m 

area approximately 245m east and 100m north of the launch 

point, and perform a survey over this area (Figure 4).  

The simulated surface vessel transits through the center of 

the AUV’s survey area, then to the randomly-chosen point 

in the endpoint region it did not start in (Figure 5).  When it 

is within engine-noise range of the AUV, the simulator 

reports the engine noise to the GDA agent, causing the fact 

engine-noise to be true in the agent’s next observation.  The 

unexpected fact engine-noise will trigger the GDA process, 

causing the following sequence: 

 The Explainer resolves the discrepancy by 

adding a contact-entered-area event to the 

agent’s history, which also sets contact-in-area. 

For a detailed discussion of explanation 

generation refer to [Molineaux and Aha, 2015]. 

 The Goal Formulator (rule-based for this test) 

evaluates the current state with explanation 

revisions. The fact contact-in-area is now true, 

but has no bearing on goal selection in this 

mission.  The goal sweep-area remains active. 

 The Goal Manager, in this mission, simply 

accepts the goal output by the Formulator as the 

new or continuing active goal. 

A similar sequence occurs if the USV is in “hostile” 

mode, and its simulated pings are detected by the AUV. The 

agent’s new observation will unexpectedly include the ping-

noise fact, causing the agent to reason about the 

discrepancy. 

 The Explainer resolves the discrepancy by 

inserting a hostile-contact-entered-area event in 

the agent’s history, which also sets hostile-

contact-in-area. 

 The Goal Formualtor evaluates the revised 

current state, including the hostile-contact-in-

area fact, which is associated with the go-to-

point goal with the coordinates from the safe-

point-location fact.  

 The Goal Manager accepts the new goal and the 

agent constructs a new plan to execute it.  

Figure 4: AUV transiting to survey area 

Figure 5: Surface vessel transiting through AUV search area.  The 

red circle indicates the range of the vessel’s engine noise, and the 

white circles represent active pings from the vessel. 

Figure 6: The AUV returning to a safe point after detecting the 

surface vessel's pings 



For this demonstration, the safe point is set near the 

launch point to prevent the AUV from driving any large 

distance from the launch point, which could complicate 

recovery in the event of an error (Figure 6). 

When the USV is no longer within ping detection range, 

the simulator stops reporting the noise to the AUV, causing 

the ping-noise fact to be unexpectedly false. The GDA agent 

resolves this discrepancy by adding a hostile-contact-exited-

area event to the history, removing the hostile-contact-in-

area fact from the current state, and re-formulating the 

sweep-area goal.. After the sweep-area goal is complete, the 

AUV formulates a new goal, go-home, to return to the 

launch point. 
 

6 Simulated Results 

To demonstrate the robustness of the GDA Controller to 
varying discrepencies we conducted 25 simulated trials of 
the mission described in Section 5.3 The trials were 
executed at 3x real time using the MOOS-IvP uSimMarine 
and pMarinePID utilities to simulate the mission in place of 
the vehicle’s Front Seat controller (Figure 3). The USV’s 
hostility was selected at random for each trial. We observed 
that the AUV correctly responded to the unexpected USV in 
100% of cases, retreating to the “safe point” when the 
USV’s pings were detected in “hostile” mode (10 trials), or 
continuing its mission despite the unexpected engine noise 
when the USV was in “neutral” mode (15 trials). 
Additionally, the AUV correctly responded by resuming its 
survey mission after the USV was out of detection range in 
100% of “hostile” trials. No additional discrepancies were 
generated. Simulations were run in a virtual machine using 
an Intel Core i7-4800MQ CPU with 8 GB of RAM 
available. Although this hardware is significantly more 
powerful than that available on the Iver2 (see Section 7), we 
did not observe the GDA process consuming more than 
10% of CPU cycles even at 3x real time simulation. These 
results suggest that the GDA Controller can successfully 
reason about the scenario considered herein using only the 
limited computational resources typically available on 
underwater robotic platforms. 

7 Discussion 

We presented preliminary results demonstrating the ability 

of our agent to control a simulated autonomous underwater 

vehicle using Goal Driven Autonomy. Currently, we are 

using an Iver2 vehicle for at-sea tests that replicate the 

simulation. We have installed and tested our agent software 

on the vehicle’s processor (1.4 GHz Pentium-M, 1 GB 

RAM), and we have conducted initial at-sea exercises at the 

same Chesapeake Bay location used in the simulated tests. 

In our initial at-sea tests, we have found that the goal 

reasoner can formulate goals and execute plans based on 

user input (start mission) and recognized completion of 

prior goals (return home after surveying a region). Figure 7 

depicts a visualization of data collected during an at-sea test, 

as the vehicle returns to its starting point after completing a 

survey. We anticipate that, after we resolve certain robotics 

challenges, our goal reasoner will correctly formulate goals 

in response to simulated changes in its environment.  

Successful tests will be used to inform our efforts as we 

proceed toward more ambitious at-sea trials.  

Although we chose a relatively simple mission for our 

initial demonstration of at-sea capabilities, we look forward 

to incorporating more realistic and complex challenges into 

our missions. For example, these will include noise in 

sensor models, maritime sources of interference, the use of 

real (vice simulated) sensors, the need to avoid collisions 

with non-simulated neutral or friendly vehicles, and the 

application of more advanced behaviors such as 

classification or following of other vehicles. 
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