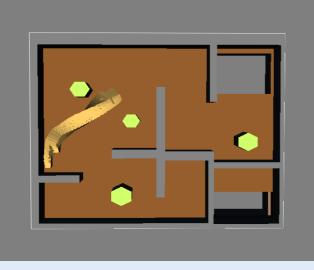
Online Goal Recognition By Mirroring In Continuous Domains

Mor Vered Gal A. Kaminka Sivan Biham

veredm@cs.biu.ac.il galk@cs.biu.ac.il


Real World Applications

- Inferring unobserved goals, based on observed actions
- Recognising intended gestures/sketches

(Sezgin & Davis, 2005)

- Anticipating user commands (Blaylock & Allen, 2004)
- Recognising navigational goals (Zhu, 1991)

000	Terminal -	bash - 80×24	
daz Sert -] 11			
otal 0			
	taff 348 2008-01-04		
	taff 510 2008-01-04		
	taff 204 2008-01-04		
	taff 1.2K 2008-01-03		
	taff 102 2008-01-02		
	taff 170 2008-01-02		
	taff 748 2007-08-14		
	taff 476 2008-01-03		
	taff 170 2008-01-02		
	taff 170 2008-01-02	19:33 Sites/	
daz Bent -]			
			1
			U
			· · · · · · · · · · · · · · · · · · ·
			*

Most Past Approaches

- Dedicated plan library
 - Represents all known plans to achieve known goals
- Redundant : Separate plans for execution and recognition
- Not efficient for continuous domains
 - Where number of possible plans is potentially infinite
- Problem handling new goals
 - Must also receive all possible plans to achieve each new goal

Most Past Approaches

Dedicated plan library

- Represents all known plans to achieve known goals
- Redundant : Separate plans for execution and recognition
- Not efficient for continuous domains
 - · Where number of possible plans is potentially infinite
- Problem handling new goals
 - . Must also receive all possible plans to achieve each new goal

Plan Recognition By Planning

[Ramírez & Geffner, 2010]

- Use planner to generate plans instead of plan library
- Assumes all observations are given at once
- Discrete domains only (STRIPS)
- Fails in continuous environments

Goal Mirroring – Space Efficient Goal Recognition for Continuous Environments

- Uses an existing planner in the recognition process
- No need for library of existing plans
- Easily add new goals
- Whatever can be planned can also be recognized
- Especially efficient for complete agents

Challenges

- Continuous environments
 - Infinite plan possibility
 - Noise in observations and actions
- How to incorporate observation history as input to planner
 - [Ramírez& Geffner (2010)] changed planner domain theory
- Different planners, different representation methods
- No general recognition performance measures
 - Independent of domain, planner and problem
- Space efficiency

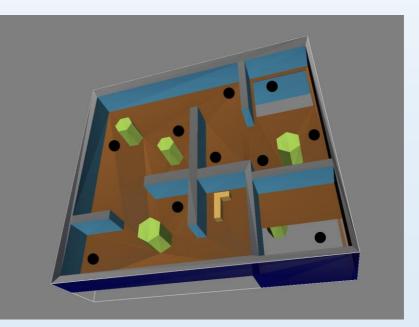
Algorithm

Algorithm 1 Online Goal Mirroring (R, planner)

- 1: for all $g \in G$ do 2: $\bar{m_g} \leftarrow planner(W, g, O(\emptyset))$ 3: for t = 0 to T do 4: $\Delta \leftarrow cost(O^t)$ 5: for all $g \in G$ do 6: $m'_g \leftarrow planner(W, g, O^t(t))$ 7: $score(g) \leftarrow cost(\bar{m_g})/(\Delta + cost(m'_g))$ 8: $P(G|O(t)) \leftarrow \eta \cdot score(g)$
- Calculate *directPlan_g* from *start* to *g* by running planner
- For each incremental observations

• Once, for each possible Goal g

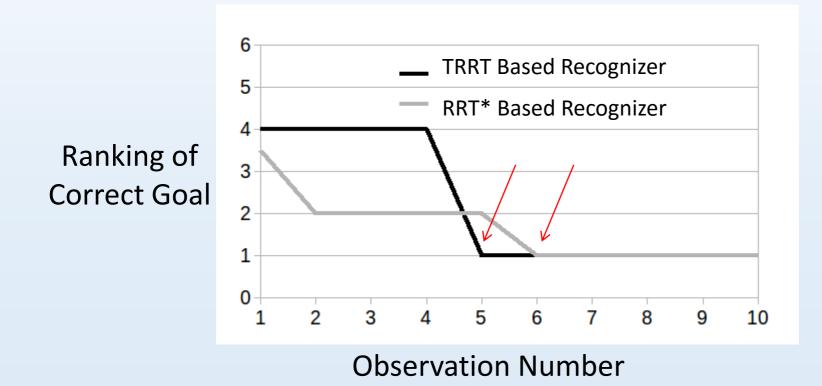
- Calculate $newPlan_g$, using planner, from current state to g
- Current Cost= cost(newPlan_g + observations seen so far)
 - Cost function domain dependant
- ratio = cost(directPlan_g / newPlan_g)


(consistent with studies on human rational intentionality bias)

Navigational Goal Recognition

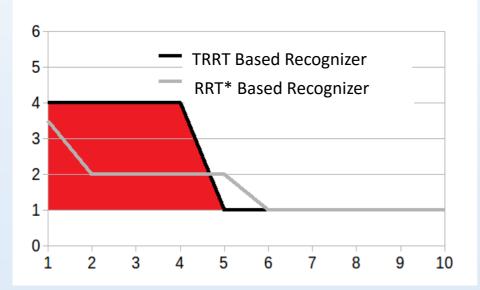
Task : identify goal location of an object observed moving in a 3D continuous world

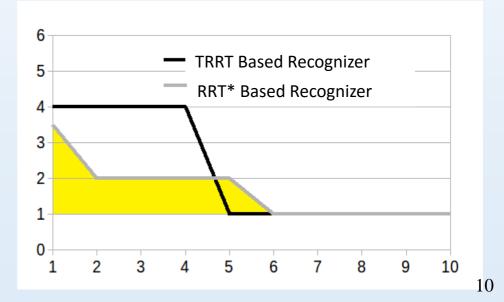
Using 4 *off the shelf* planners **RRT***, **TRRT**, **RRTConnect**, **KPIECE1**, Cubicles env. and robot (OMPL)[Sucan, Moll, & Kavraki (2012)]


- · Selected 11 points arbitrarily
- · Generated observed paths from each point to all others
- · 110 recognition problems

Measuring Recognition Results

Convergence Ratio

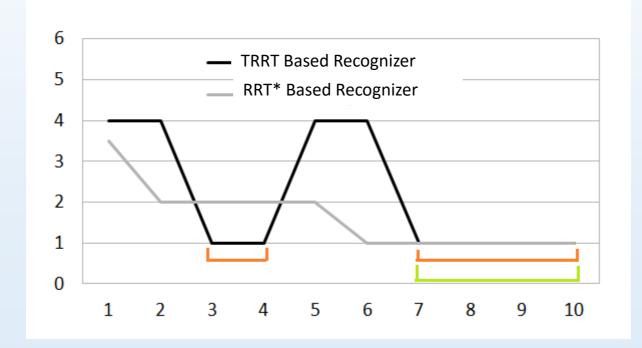

- Time the recognizer converged to the correct hypothesis
- Measured by number of current rankings from the end



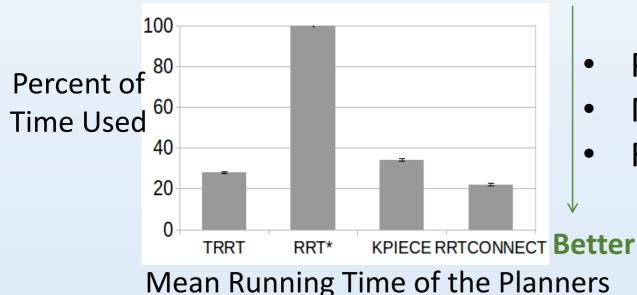
Measuring Recognition Results

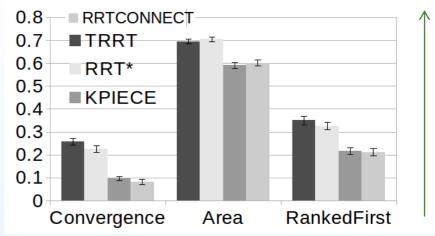
AUC – Area Under Curve

- Greater area means the recognizer ranked the correct hypothesis lower
- False positive measure
- Indication as to uncertainty



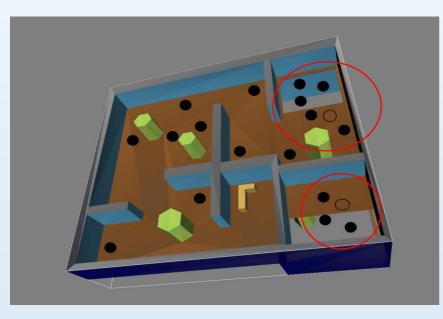
Measuring Recognition Results

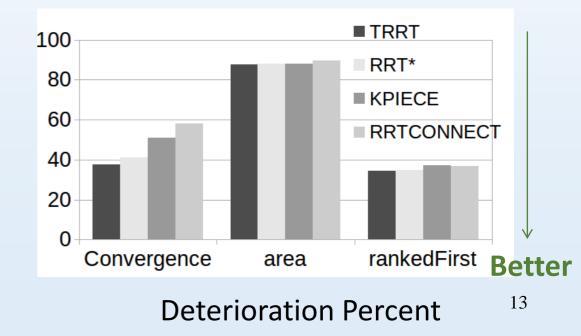

Ranked First


- Amount of times ranked first not consecutively
- Measure of reliability

Planner Comparison

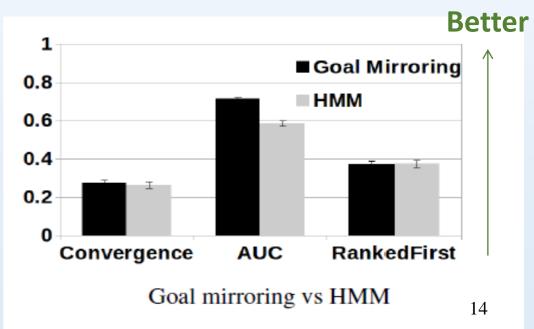
- TRRT and RRT* better
- TRRT, RRT* produce paths closer to optimal

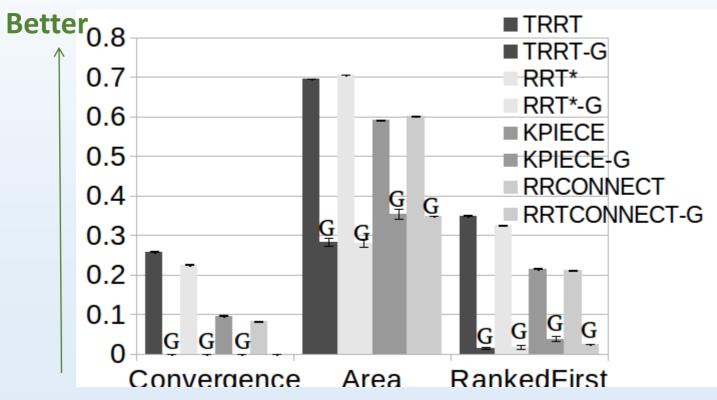



- Planner limited to 1 sec.
- Mean over 110 problems
- RRT* uses all time allotted

Better

Sensitivity to Recognition Difficulty


- Added 9 goal points, 380 recognition problems
- Added in close proximity to existing points clusters
- TRRT more robust in Convergence


Goal Mirroring vs Hidden Markov Model

- Discretized the environment
 - Robot-sized cells, each one represented by a state
- HMM training data : 20 paths generated by optimal- RRT*
- Standard MATLAB HMM package
- Mirroring on-par with HMM

Comparison of Different Heuristics

- Different ranking heuristic : ratio vs. difference
- Will not work in continuous env.

Conclusions : Online Goal Mirroring

- Continuous domains
- Uses planner to generate recognition hypotheses
- Shown that two factors impact recognition success
 - Optimality of planner used
 - Ranking heuristic
- Goal Mirroring preferred when less data is available and when possibilities are infinite.
- Further results in paper

veredm@cs.biu.ac.il