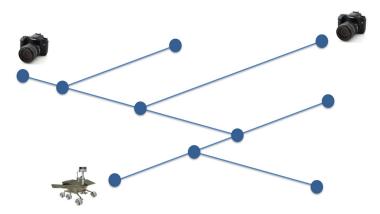
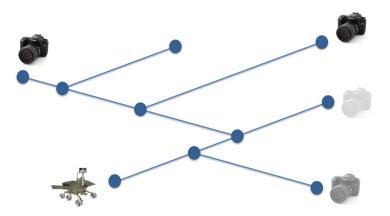
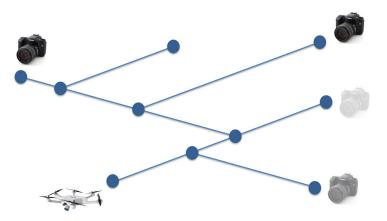
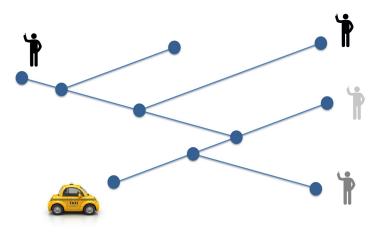
ANTICIPATORY SEARCH AS PARTIAL SATISFACTION PLANNING WITH STATE DEPENDENT COSTS


Daniel Borrajo Raquel Fuentetaja Tomás de la Rosa


Universidad Carlos III de Madrid

Workshop on Goal Reasoning. IJCAI'16





$\mathsf{MDP} \langle S, A, T, C \rangle$

- Set of states, *S*. *s* ∈ *S*, *s* = (*w*, *G*) ∈ *W* × *G*
- Set of actions, A
- Transition function, $T : S \times A \times S \rightarrow [0, 1]$
- Cost function, $C: S \times A \times S \rightarrow \mathbb{R}^+_0$

[Burns et al., 2012]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

Assumptions

- Actions are
 - deterministic on states
 - stochastic on goals

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Assumptions

- Actions are
 - · deterministic on states
 - stochastic on goals
- Goals set monotonically increases

Assumptions

- Actions are
 - deterministic on states
 - stochastic on goals
- Goals set monotonically increases
- Goals are independent of states
- Goals are independent of each other

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Assumptions

- Actions are
 - · deterministic on states
 - stochastic on goals
- Goals set monotonically increases
- Goals are independent of states
- Goals are independent of each other

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Reasoning on a finite horizon H

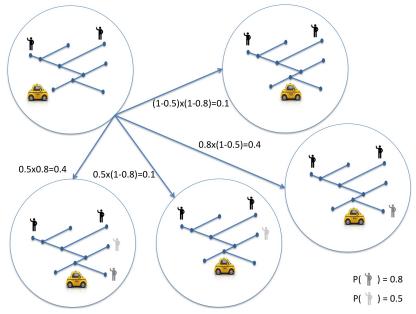
Assumptions

- Actions are
 - deterministic on states
 - stochastic on goals
- Goals set monotonically increases
- Goals are independent of states
- Goals are independent of each other
- Reasoning on a finite horizon H

Objective

Minimize the sum of

- penalties for unachieved goals and
- actions costs


Transition function

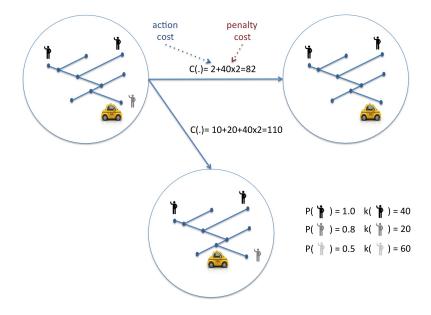
 $T(s, a, s') = \begin{cases} 0 & ext{if } a ext{ not applicable in } s \\ P(G' \mid G) ext{ otherwise} \end{cases}$

$$P(G'|G) = \begin{cases} 0 & \text{if } G \nsubseteq G' \\ 1 & \text{if } G = G' = \mathcal{G} \\ \begin{bmatrix} \prod_{g \in G' - G} P(g) \end{bmatrix} \times \begin{bmatrix} \prod_{g \in \mathcal{G} - G'} (1 - P(g)) \end{bmatrix} \text{ otherwise} \end{cases}$$

(ロ)、

Transition function

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○


Cost function

$$C(a, s') = C(a, (w', G')) = cost(a) + penalty(w', G')$$

$$penalty(w', G') = \sum_{g' \in G'} penalty(w', g')$$
$$penalty(w', g') = \begin{cases} k_{g'} & \text{if } g' \notin w' \\ 0 & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Cost function

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

- Efficient problem solving
 - \implies OCPP (MDP) as Automated Planning (AP)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Efficient problem solving
 - \implies OCPP (MDP) as Automated Planning (AP)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

• Domain-independent problem solving vs. Hindsight Optimization (HO)

- Efficient problem solving
 - \implies OCPP (MDP) as Automated Planning (AP)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Domain-independent problem solving vs. Hindsight Optimization (HO)
- Reasoning on a finite horizon H
 - \implies AP use of a search horizon
 - \implies AP use of soft goals

- Efficient problem solving
 - \implies OCPP (MDP) as Automated Planning (AP)
- Domain-independent problem solving vs. Hindsight Optimization (HO)
- Reasoning on a finite horizon H
 - \implies AP use of a search horizon
 - \implies AP use of soft goals
- Objective: minimize sum of action costs and penalties

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \implies AP use of state-dependent action costs

- Efficient problem solving
 - \implies OCPP (MDP) as Automated Planning (AP)
- Domain-independent problem solving vs. Hindsight Optimization (HO)
- Reasoning on a finite horizon H
 - \implies AP use of a search horizon
 - \implies AP use of soft goals
- Objective: minimize sum of action costs and penalties
 - ⇒ AP use of state-dependent action costs

Partial Satisfaction Planning with Horizon and State-Dependent costs (PSP-HSD)

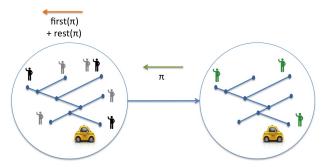
Partial Satisfaction Planning with Horizon and State-Dependent costs

$\mathsf{PSP-HSD},\, \Pi = (\mathcal{F}, \mathcal{A}, \mathcal{I}, \textit{SG}, \mathcal{C}, \textit{H})$

- \mathcal{F} , finite set of fluents
- A, finite set of actions
- $\mathcal{I} \subseteq \mathcal{F}$, initial state
- $SG \subseteq \mathcal{F}$, set of soft goals
- $\mathcal{C} : \mathcal{A} \times \mathcal{W} \to \mathbb{R}^+_0$, state-dependent action cost function

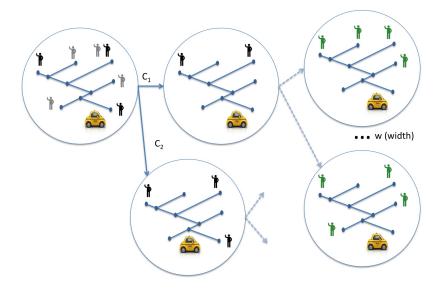
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $H \in \mathbb{N}_0$, finite horizon

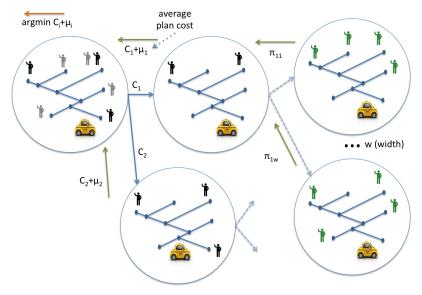

Action Selection algorithms using PSP-HSD

- Reactive (R)
- Hindsight Optimization (HO) [Burns et al., 2012]

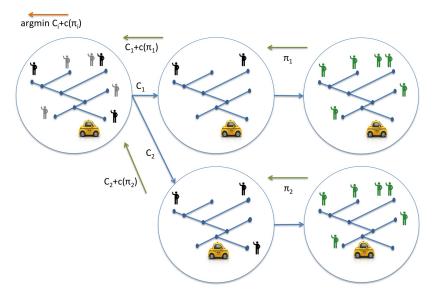
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


- Goal-Distribution-Sensitive (GDS) Planning
 - Step Execution (GDS-SE)
 - Long-term Execution (GDS-LE)

Reactive

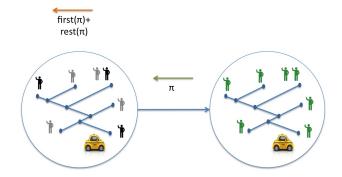

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Hindsight Optimization



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hindsight Optimization



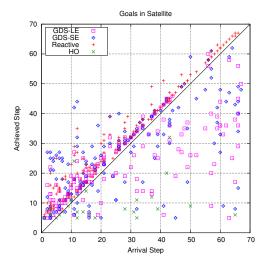
Short-term Execution

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Long-term Execution

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Execution


Technique	Replanning	Future goals
Reactive (GDS-R)	when new goals appear	no
Hindsight Optimization (HO)	at each time step	sampling + determinization
Step Execution (GDS-SE)	at each time step	determinization + state-dependent cost
Long-term Execution (GDS-LE)	when new goals appear	determinization + state-dependent cost

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Experimental results. Random Goal Arrival Distribution

Problem	GDS	DS-LE GDS-SE		S-SE	HO		Reactive	
(# goals)	time	cost	time	cost	time	cost	time	cost
rover-1 (14)	5.6	2.3	68.8	3.9	22.5	20.4	6.7	3.7
rover-2 (22)	9.3	12.5	125.3	34.7	57.2	77.7	11.1	10.0
rover-3 (26)	9.2	14.6	160.6	41.1	87.7	92.3	12.7	9.2
satel-1 (32)	9.7	4.2	66.6	7.3	27.0	51.0	13.6	7.7
satel-2 (50)	18.0	20.1	113.1	41.6	57.7	153.1	22.7	19.2
satel-3 (72)	22.8	41.9	129.1	127.7	89.9	253.4	30.1	30.9
tpp-1 (12)	5.0	3.4	52.5	2.6	19.4	15.5	5.0	4.0
tpp-2 (18)	7.3	9.0	87.7	6.2	38.6	35.3	7.4	7.2
tpp-3 (24)	10.1	18.9	124.5	17.1	80.7	65.2	11.3	12.3
uav-1 (24)	8.1	5.0	67.0	4.9	10.6	35.9	9.7	7.3
uav-2 (40)	15.6	16.7	121.3	13.2	20.5	125.8	18.2	16.7
uav-3 (60)	22.2	59.8	181.5	63.7	68.1	286.4	27.4	21.9

Experimental results. Goal arrival vs. achievement

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Experimental results. Different goal penalties

	GDS-LE		GDS-SE		Reactive	
Problem	time	cost	time	cost	time	cost
rovers-2	9.1	13.5	69.2	23.6	9.9	35.3
satel-2	16.9	16.8	64.7	24.5	20.9	41.2
tpp-2	8.3	44.4	52.0	34.7	8.0	66.8
uav-2	15.2	20.1	65.7	19.5	16.1	66.0

・ロト・日本・日本・日本・日本・日本

Contributions

- Characterization of the PSP-HSD task
 - soft-goals
 - finite horizon
 - state-dependent costs
- Redefinition of two previous action selection schemes

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

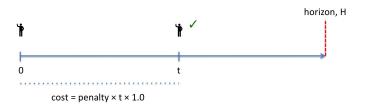
- Definition of two new action selection schemes
- Compilation from PSP-HSD to PDDL

Contributions

- Characterization of the PSP-HSD task
 - soft-goals
 - finite horizon
 - state-dependent costs
- Redefinition of two previous action selection schemes
- Definition of two new action selection schemes
- Compilation from PSP-HSD to PDDL
- If you ever wonder where do future goals some from,

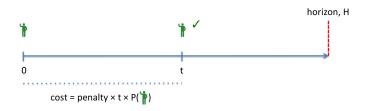
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Contributions

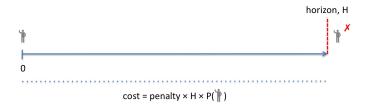

- Characterization of the PSP-HSD task
 - soft-goals
 - finite horizon
 - state-dependent costs
- Redefinition of two previous action selection schemes
- Definition of two new action selection schemes
- Compilation from PSP-HSD to PDDL
- If you ever wonder where do future goals some from, wait until Alberto tells you how to do it...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

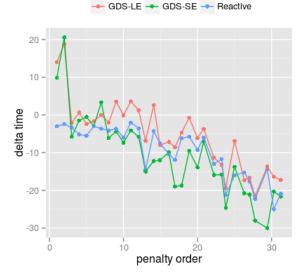
Thank you


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Cost computation



Cost computation



Cost computation

Experimental results. Different goal penalties

◆ロト★園▶★恵▶★恵▶ 恵 のなぐ

Experimental results. Medium-size problems. 300s

Problem	GDS-LE		GDS-SE		Reactive		
(# goals)	time	cost	time	cost	time	cost	
rovers-2	35.0	5.3	595.6	8.9	49.0	7.8	
satel-2	88.0	16.0	562.8	20.8	110.0	18.5	
tpp-2	44.0	8.6	404.2	6.8	45.5	10.3	
uav-2	70.5	14.3	600.4	12.0	84.5	15.5	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

References

Ethan Burns, J. Benton, Wheeler Ruml, Sungwook Yoon, and Minh B. Do.

(ロ)、(型)、(E)、(E)、 E のQの

Anticipatory on-line planning. In *Proceedings of ICAPS*, 2012.