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Intelligent Autonomous Behavior

1 Behavior-based AI: set of independent simple reactive modules.
• intelligent behavior emerges “implicitly”.
• popular in robotics (since the ’80).

2 Agent-oriented programming: control specified by programmer.
• BDI systems: JACK, JASON, 3APL, etc.
• High-level languages: Golog-like languages, FLUX, etc.

3 Learning: learn how to act based on previous experience.
• E.g., reinforcement learning.

4 Automated Planning: automatic synthesis of behavior from model.

• Input: model of the world + initial state + goal to be achieved.
• Output: plan or controller to achieve the goal in the world.
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What are we after?

1 Understand what constitute “rational behavior” & an “agent”.
• Theory of Practical Reasoning.
• Informed by:

• Philosophy of mind.
• Phsycology.
• Computer Science.

2 Find ways to design and program agent systems
• Informed by what rational behavior is...
• Two areas:

• Agent-oriented Software Engineering.
• Agent-oriented Programming.
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Agent Systems
An intelligent agent is an autonomous entity, existing over time in a
dynamic environment, that is able to rationally balance pro-active and
reactive behavior. It perceives through sensors and acts through
effectors.

autonomy: does not require continuous external control.
pro-activity: pursues goals over time; goal directed behavior.

reactivity: perceives the environment and responds to it.
situatedness: observe & act in the environment.

flexibility: achieve goals in several ways.
robustness: will try hard to achieve goals.

And also: modular scalability & adaptability!
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robustness: will try hard to achieve goals.

And also: modular scalability & adaptability!

goal-orientation!
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Technology Development

Structured programming (FORTRAN, C)
Monolithic systems - Communication API (sockets)

Object Oriented programming (C++, Java, Delphi)
Client/Server - Remote Procedure Call (CORBA)

Agent Oriented Programming (BDI systems)
Distributed Control - Multi-agent frameworks (JADE)

abstraction level
distribution

complexity of domain
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International Multi-Agent Contest

https://multiagentcontest.org/
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International Multi-Agent Contest

https://multiagentcontest.org/

• stimulate research in multi-agent system development
and programming;

• identifying key problems;
• collecting suitable benchmarks;
• gather test cases;
• test multi-agent prog. languages, platforms, tools.

We encourage submissions that specify and design a multi-
agent system in terms of high-level concepts such as goals,
beliefs, plans, roles, communication, coordination, negotiation,
and dialogue in order to ...
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Intentional Stance for Computer Systems?

“To ascribe beliefs, free will, intentions,
consciousness, abilities, or wants to a
machine is legitimate when such an
ascription expresses the same
information about the machine that it
expresses about a person. It is useful
when the ascription helps us understand
the structure of the machine, its past or
future behavior, or how to repair or
improve it. [...] ”

John McCarthy

Question
How do we make all these ideas a concrete computational approach?
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BDI Model: Thinking of and building “rational” systems

IRMA Architecture
(Intelligent Resource-bounded Machine Architecture)
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IRMA Architecture [Bratman, Israel, Pollack CI’88]
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Detailed BDI Architecture

SENSORS

ACTUATORS

Beliefs

E
nv

ir
on

m
en

t

Pending Events

Intention Stacks

BDI engine

actions

events

Plan
library

e1 : ψ1 ← δ1
...

en : ψn ← δn

goals/desires
to resolveinformation

about the world

recipes for
handling

goals-eventspartially
uninstantiated
programs with
commitment

reasoner
Rational behavior arises due

to the agent committing
to some of its desires, and

selecting actions that achieve
its intentions given its beliefs.
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The BDI Execution Cycle [Rao&Georgeff 92]

Event

Beliefs Plan
library

e1 : ψ1 ← δ1
...

en : ψn ← δn

Select plan
based on situation

e

query ψ

Current Intentions

push δ

Step on
some

intention

Action

sub-goal generation

update
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Some BDI Agent-oriented Programming Languages

Some BDI programming language systems/platforms/architectures:

1 PRS & dMars

2 3APL http://www.cs.uu.nl/3apl/

3 GOAL http://ii.tudelft.nl/trac/goal/

4 2APL http://apapl.sourceforge.net/

5 JASON http://jason.sourceforge.net/wp/

6 JADEX http://sourceforge.net/projects/jadex/

7 SPARK http://www.ai.sri.com/˜spark/

8 JACK http://aosgrp.com/products/jack/

9 SARL http://www.sarl.io/
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Defining Agents in JACK: Player.agent
Base class: aos.jack.jak.agent.Agent
p u b l i c agent Player extends Agent {

#has capabi l i ty Cl imaTalk ing cap ;
#handles event PerceiveCl imaServer ;
#handles event EExecuteCLIMAaction ;
#handles event EAct ;
#posts event EExecuteCLIMAaction ev executeAct ion ;
#sends event EInformLoc ev informLoc ;

. . .
#uses plan MoveRandomly ;
#uses plan PickGold ;
#uses plan HandlePercept ;

. . .
#private data GoldAt be l go ldA t ( ) ;
#private data Cur ren tPos i t i on b e l c u r r P o s i t i o n ( ) ;
#private data NumCarryingGold bel noCarrGold ( ) ;
. . . .

}
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Prometheus Design Tool (PDT)
1 Design: of an agent system in 3 interrelated phases.
2 Code generation: skeleton code in JACK agent language.

www.cs.rmit.edu.au/agents/pdt/
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Possibility of Many Options
BDI execution = delayed context subgoal expansion + failure recovery

Goal

Plan 1 Plan 2 Plan 3

different ways

to achieve goal

subgoals
BDI Programming

=

Implicit Goal-based Programming
+

Rational Online Executor
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From David’s talk: Better future performance

1 Avoid dead-ends with respect to current goals.

2 Avoid states to jeopardize goal achievement in future.

3 Take actions to maximize actions and goal in the future.

... or something on these lines. :-)
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Two Core Deliberation Tasks
Standard Rational Executor/Reasoner
[Rao and Georgeff 1992, Bratman et al. 1988]

1 select pending event-goals to handle (deliberation and filtering).

2 select a plan to handle goal & commit to it (means-end reas.).

3 select intention and execute part of it (execution).

Standard approaches:
• Let the BDI user program both selections

• meta-reasoning plans, deliberation cycle programming,
preferences.

• Select from several built-in schemes.
• random, top-down, round-robin, FIFO.

• Select based on additional domain information.
• priorities, deadlines, reward and cost, etc.
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Towards Better Plan & Intention Selection
Smarter plan & intention selection under 3 constraints:
• Domain-independent: no extra domain information required.
• No major overhead on BDI executor.
• Easily incorporated into existing BDI platforms.

General approach

Plan Selection: Prefer plans that have succeeded in similar situations.
• Learn/improve plans’ context conditions.
• Induce decision trees for plans’ based on executions.
• Rely on WEKA package.
• [AAMAS’10, JRAS’10, IJCAI’11]

Intention Selection: Prefer most “vulnerable” applicable intention.
• How much know-how is available for a goal-event?
• Reason on plan/goal coverage using model counting.
• [AAMAS’12, AAMAS’14, JAAMAS’15]

Sebastian Sardina, Intention and Plan Selection for BDI Agent Systems. GR’16 - July 9, 2016 19 / 35



BDI Programming Learning to Select Plans Intention Selection Conclusions

Towards Better Plan & Intention Selection
Smarter plan & intention selection under 3 constraints:
• Domain-independent: no extra domain information required.
• No major overhead on BDI executor.
• Easily incorporated into existing BDI platforms.

General approach
Plan Selection: Prefer plans that have succeeded in similar situations.

• Learn/improve plans’ context conditions.
• Induce decision trees for plans’ based on executions.
• Rely on WEKA package.
• [AAMAS’10, JRAS’10, IJCAI’11]

Intention Selection: Prefer most “vulnerable” applicable intention.
• How much know-how is available for a goal-event?
• Reason on plan/goal coverage using model counting.
• [AAMAS’12, AAMAS’14, JAAMAS’15]

Sebastian Sardina, Intention and Plan Selection for BDI Agent Systems. GR’16 - July 9, 2016 19 / 35



BDI Programming Learning to Select Plans Intention Selection Conclusions

Towards Better Plan & Intention Selection
Smarter plan & intention selection under 3 constraints:
• Domain-independent: no extra domain information required.
• No major overhead on BDI executor.
• Easily incorporated into existing BDI platforms.

General approach
Plan Selection: Prefer plans that have succeeded in similar situations.

• Learn/improve plans’ context conditions.
• Induce decision trees for plans’ based on executions.
• Rely on WEKA package.
• [AAMAS’10, JRAS’10, IJCAI’11]

Intention Selection: Prefer most “vulnerable” applicable intention.
• How much know-how is available for a goal-event?
• Reason on plan/goal coverage using model counting.
• [AAMAS’12, AAMAS’14, JAAMAS’15]

Sebastian Sardina, Intention and Plan Selection for BDI Agent Systems. GR’16 - July 9, 2016 19 / 35



BDI Programming Learning to Select Plans Intention Selection Conclusions

Towards Better Plan & Intention Selection
Smarter plan & intention selection under 3 constraints:
• Domain-independent: no extra domain information required.
• No major overhead on BDI executor.
• Easily incorporated into existing BDI platforms.

General approach
Plan Selection: Prefer plans that have succeeded in similar situations.

• Learn/improve plans’ context conditions.
• Induce decision trees for plans’ based on executions.
• Rely on WEKA package.
• [AAMAS’10, JRAS’10, IJCAI’11]

Intention Selection: Prefer most “vulnerable” applicable intention.
• How much know-how is available for a goal-event?
• Reason on plan/goal coverage using model counting.
• [AAMAS’12, AAMAS’14, JAAMAS’15]

Sebastian Sardina, Intention and Plan Selection for BDI Agent Systems. GR’16 - July 9, 2016 19 / 35



BDI Programming Learning to Select Plans Intention Selection Conclusions

The BDI Execution Cycle [Rao&Georgeff 92]

Event

Beliefs Plan
library

e1 : ψ1 ← δ1
...

en : ψn ← δn

Select plan
based on situation

e

query ψ

Current Intentions

push δ

Step on
some

intention

Action

sub-goal generation

update
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Recap. Plan Selection
• Problem: Context conditions hard to craft & environment changes.

• Approach: Attach decision tress to plans + confidence measure.
• Easy to incorporate by using learning packages (eg., WEKA)

Select plan
probabilistically

Execute and
record outcome

Update plan’s
decision tree

Plan Selection relative to confidence level:

• Plan success rate (as per DT).

• Plan Stability.

• World novelty rate.

• Empirical Evaluation: agent learns to succeed & adapts

• Synthetic programs of various shapes [AAMAS’10]

• Hanoi Tower [JRAS’10]

• Battery Controller [IJCAI’11]

Sebastian Sardina, Intention and Plan Selection for BDI Agent Systems. GR’16 - July 9, 2016 21 / 35



BDI Programming Learning to Select Plans Intention Selection Conclusions

Recap. Plan Selection
• Problem: Context conditions hard to craft & environment changes.

• Approach: Attach decision tress to plans + confidence measure.
• Easy to incorporate by using learning packages (eg., WEKA)

Select plan
probabilistically

Execute and
record outcome

Update plan’s
decision tree

Plan Selection relative to confidence level:

• Plan success rate (as per DT).

• Plan Stability.

• World novelty rate.

• Empirical Evaluation: agent learns to succeed & adapts

• Synthetic programs of various shapes [AAMAS’10]

• Hanoi Tower [JRAS’10]

• Battery Controller [IJCAI’11]

Sebastian Sardina, Intention and Plan Selection for BDI Agent Systems. GR’16 - July 9, 2016 21 / 35



BDI Programming Learning to Select Plans Intention Selection Conclusions

Recap. Plan Selection
• Problem: Context conditions hard to craft & environment changes.

• Approach: Attach decision tress to plans + confidence measure.
• Easy to incorporate by using learning packages (eg., WEKA)

Select plan
probabilistically

Execute and
record outcome

Update plan’s
decision tree

Plan Selection relative to confidence level:

• Plan success rate (as per DT).

• Plan Stability.

• World novelty rate.

• Empirical Evaluation: agent learns to succeed & adapts

• Synthetic programs of various shapes [AAMAS’10]

• Hanoi Tower [JRAS’10]

• Battery Controller [IJCAI’11]

Sebastian Sardina, Intention and Plan Selection for BDI Agent Systems. GR’16 - July 9, 2016 21 / 35



BDI Programming Learning to Select Plans Intention Selection Conclusions

A Battery Storage Application [IJCAI’11]
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Given net building demand, calculate an appropriate battery response
in order to maintain grid power consumption within range [0,ph].
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Experiment: Partial Failure with Restoration
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Recovery from temporary module failures during [0,20k ], [20k ,40k ]
episodes.
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Intention Selection
How to choose which intention to progress next?

Issues intention interference + dynamic environment +
incomplete know-how

Objective maximize successfully executed intentions

Standard approaches:
Simple first-in-first-out (FIFO) and round-robin (RR)

Meta-level programming deliberation cycle, call-back hooks, etc.
Domain info priorities, deadlines, value, dependencies, etc.

Challenge: intelligent, domain-independent intention selection
• improves intention success;
• improves focus of attention;
• low over-head;
• easy to implement.
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Low Coverage Prioritization [AAMAS’12]

Idea: Opportunistically execute the most “vulnerable” intention

Intentions contain unresolved goals...
How much “know-how” is available?
Less know how, more vulnerable...

⇓

Plan coverage = % states applicable
Goal coverage = % states with app. plans

Aggregated coverage = considers
know-how below hierarchy

Lower the coverage, more vulnerable
intention
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Experimental Results: Impact on Intention Success

Improves success consistently!
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Impossible
to beat!
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Coverage of Plans and Goals

Coverage of a plan = % of states where plan is applicable
Coverage of a goal = % of states with plans available

Overlap of plans = plans applicable simultaneously
Aggregated coverage = know-how below hierarchy + overlap
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Enablement Contribution

Major component is goal enablement checking!
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Enablement Addition to FIFO and RR on Hanoi
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Enablement Addition to FIFO and RR on Hanoi II

FIFO FIFOE RR RRE

Failure recovery rate
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Summary

• Intention & Plan selection at the core of BDI “intelligence”
• ... but almost not addressed (in domain-independent way)!

• Proposed learning-based plan selection:
• Attach a decision tree as a “learnt” context-condition.
• Use of confidence measure to balance exploit/explore.
• Experimental Results:

• Converges to optimal
• Adapts to changes.

• Proposed low-coverage prioritization:
• Pick most “know-how vulnerable” intention: via coverage
• Experimental Results:

• Increases the success rate (almost always).
• Better in low-coverage + highly dynamic situations.
• Improves RR significantly with little loss on fairness.
• Improves efficiency & decreases failure recovery.

• Both approaches domain-independent & implementable.
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Challenges?
Need more advanced built-in infrastructure support for goal reasoning:

1 domain-independent;
2 automatic;
3 not based on new programming constructs;
4 based on knowledge representation & learning!

Promising challenges:
1 Plan & intention selection: key places of deliberation!

2 Goals and plan integration: representation & reasoning

3 Goal conflict & synergies.

4 Goal generation/creation: basic motivations/desires?

5 Verification & debugging techniques/tools.
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Thank you for your attention!

. . . and thanks to those who contributed to this work:

Lin Padgham John Tangarajah Dhirendra Singh
Max Waters
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Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge.
Programming Multi-agent Systems in AgentSpeak Using Jason.
Wiley Series in Agent Technology. Wiley, 2007.

Sebastian Sardina, Intention and Plan Selection for BDI Agent Systems. GR’16 - July 9, 2016 36 / 35



References: Plan Selection

Dhirendra Singh, Sebastian Sardina, and Lin Padgham.
Extending BDI plan selection to incorporate learning from experience.
Journal of Robotics and Autonomous Systems, 58:1067–1075, 2010.

Dhirendra Singh, Sebastian Sardina, Lin Padgham, and Stéphane Airiau.
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A Dynamic Confidence Measure

P

G1

Pa

×
Pb
√

G2

Pc
√

Pd

×
Pe

×

Observe & record on averaging window n:
• rate of plan success.
• plan local stability: success rate > ε?
• plan global stability: ratio of stable plans

below in the goal-tree.
• rate of new worlds seen.

Confidence Measure for Plans
• Stability measure Cs(P,w ,n):

• how well-informed the last n executions of plan P in world w were?
• World metric Cw (P,n):

• how much we have seen the “interesting” worlds for P?
• Aggregated confidence measure C(P,w ,n):

• C(P,w ,n) = αCs(P,w ,n) + (1− α)Cw (P,n)
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Example: Dynamic Confidence Measure

P

G1

Pa

×
Pb
√

G2

Pc

×
Pd

×
Pe
√

After E=15, Pc starts to fail.
The confidence drops,
promoting new exploration
and re-learning.
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Plan Selection via Plan Weighting

Given P ’s confidence measure C(P,w ,n) & DT estimation P(P,w):

Plan Weight
Using predicted likelihood of success & confidence measure:

Ω(P,w ,n) = 0.5 + [C(P,w ,n)× (P(P,w)− 0.5)] ,

• When C(P,w ,n) = 1, then Ω(P,w ,n) = P(P,w)

• When C(P,w ,n) = 0, then Ω(P,w ,n) = .5 (default weight)

BDI Plan selection: probabilistically+proportionally to plans’ weights.
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