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Intelligent Autonomous Behavior

Behavior-based Al: set of independent simple reactive modules.

e intelligent behavior emerges “implicitly”.
e popular in robotics (since the '80).
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Intelligent Autonomous Behavior

Behavior-based Al: set of independent simple reactive modules.
e intelligent behavior emerges “implicitly”.

e popular in robotics (since the '80).

Agent-oriented programming: control specified by programmer.
e BDI systems: JACK, JASON, 3APL, etc.
e High-level languages: Golog-like languages, FLUX, etc.

Learning: learn how to act based on previous experience.
e E.g., reinforcement learning.

B Automated Planning: automatic synthesis of behavior from model.

e Input: model of the world + initial state + goal to be achieved.
e QOutput: plan or controller to achieve the goal in the world.
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Intelligent Autonomous Behavior

Agent-oriented programming: control specified by prg
« BDI systems: JACK, JASON, 3APL, etc. ﬁ

¢ High-level languages: Golog-like languages, FLUX, et*
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What are we after?

Understand what constitute “rational behavior” & an “agent”.
e Theory of Practical Reasoning.
¢ Informed by:

e Philosophy of mind.
e Phsycology.
e Computer Science.

Find ways to design and program agent systems

¢ Informed by what rational behavior is...
e Two areas:

e Agent-oriented Software Engineering.
e Agent-oriented Programming.
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Agent Systems

An Gl Ehi®Ethid is an autonomous entity, existing over time in a
dynamic environment, that is able to rationally balance pro-active and

reactive behavior. It perceives through sensors and acts through
effectors.

Conclusions
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Agent Systems

An Gl Ehi®Ethid is an autonomous entity, existing over time in a
dynamic environment, that is able to rationally balance pro-active and
reactive behavior. It perceives through sensors and acts through
effectors.

autonomy: does not require continuous external control.
pro-activity: pursues goals over time; goal directed behavior.
reactivity: perceives the environment and responds to it.
situatedness: observe & act in the environment.
flexibility: achieve goals in several ways.
robustness: will try hard to achieve goals.

And also: modular scalability & adaptability!
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Technology Development

abstractiondével
distribaition
complexXity of domain

Agent Oriented Programming (BDI systems)
Distributed Control - Multi-agent frameworks (JADE)

Object Oriented programming (C++, Java, Delphi)
Client/Server - Remote Procedure Call (CORBA)

Structured programming (FORTRAN, C)
Monelithic systems - Communication API (sockets)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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International Multi-Aaent Contest

Wb 11

Agent Programming Contest

You are here: Home CLOSE INFO

Important Dates

Home
Aims & Scope. Draft schedule 2016
P Multi-Agent Programming Contest 2015 Testing: Until end of Ju
sl 2 e RS s T esting: Until end of July

Downloads (All) % . R .\ Registration: Beginning of August
Connection Test: Mid-August

Publications Qualification: End of August
Contest: September

2016

News.

News

Scenario New Package (2016-1.0)

Geting Started A new package (version 2016 1.0) has

finally been released!
Important Dates

New Package (0.6)
A new package (version 2015 0.6) has
been released!

Participation Requirements
Mailing List
New Package (0.2)

A new package (version 2015 0.2) has
been released!

Teaching
Our scenario consists of two teams of agents moving through the
sirets of a realistic ciy. The goal for each team is to eam as much
money as possible. Money is rewarded for completing certain jobs. Jobs
comprise the acquisition, assembling, and transportation of goods.
History These jobs can be created by either the system (environment) or one of
the agent teams. There are two kind of jobs: priced and auctioned. A
team can accept an auctioned job by bidding on it. The bid amount of
2013 money is the reward. If both teams bid, naturally the lowest bid wins.
2012 Ifajob is not completed in time, the corresponding team is fined.

MASSim in Teaching

Downloads (Teaching)

2014

https://multiagentcontest.org/
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BDI Programming

International Multi-Aaent Contest

@;@llli-ﬂgenl Programming Contest

stimulate research in multi-agent system development
and programming;

identifying key problems;

collecting suitable benchmarks;

gather test cases;

test multi-agent prog. languages, platforms, tools.

We encourage submissions that specify and design a multi-
agent system in terms of high-level concepts such as goals,
beliefs, plans, roles, communication, coordination, negotiation,
and dialogue in order to ...

ot i jois ot complted i e, h crtsponding oamis .
https://multiagentcontest.org/
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International Multi-Aaent Contest

old Mining

P 2005-2007

a

beliefs, pl : e oriation,

[Tlagenccon
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International Multi-Aaent Contest
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Intentional Stance for Computer Systems?

“To ascribe beliefs, free will, intentions,
consciousness, abilities, or wants to a
machine is legitimate when such an
ascription expresses the same
information about the machine that it
expresses about a person. It is useful
when the ascription helps us understand
the structure of the machine, its past or
future behavior, or how to repair or
improve it. [...] ”

John McCarthy

How do we make all these ideas a concrete computational approach? l
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BDI Model: Thinking of and building “rational” systems

Plans and resource-bounded practical reasoning

MICHAEL E. BRATMAN
Department of Philosophy and Center for the Study of Language and Information, Stanford University, Stanford,
CA 94305, U.S.A.
AND
Davip J. ISRAEL AND MARTHA E. PoLLACK

Artificial Intelligence Center and Center for the Study of Language and Information, SRI International,
333 Ravenswood Avenue, Menlo Park, CA 94025, U.S.A.

Received September 13, 1987
Revision accepted September 19, 1988

An architecture for a rational agent must allow for mea d ing, for the weighing of peting alternatives, and for
interactions betwen these two forms of reasoning. Such an architecture must also address the problem of resource
boundedness. We sketch a solution of the first pmblem that points the way to a solution of the second. In particular, we present
a high-level specification of the practical of an archi fora bounded rational agent. In this
architecture, a major role of lhe agent’s plans is to constrain the amount of further practical reasoning she must perform.

Key words: planning, practical reasoning, resource bounds.

L’architecture d'un agent rationnel doit permettre le raisonnement procédant des fins aux moyens, le choix entre différentes
actions possibles, et I’ |nlemcllon entre ces deux modes de raisonnement. Elle doit aussi tenir compte des conséquences des
limites de ib Nous i ici une solution au premier probléme qui indique comment on pourrait
résoudre le second. Nous proposons, en particulier, une spécification abstraite d'un module de génération de plans pour un
agent rationnel dont les ressources sont bornées. Dans cette architecture, le role principal des plans d’un agent est de limiter les
ressources devant étre consacrés au raisonnement.

Mots clés : planification, raisonnement pratique, limites de ressources.

Comput. Intell. 4, 349—355 (1988)

IRMA Architecture
(Intelligent Resource-bounded Machine Architecture)
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Intention Selection

Conclusions

[Bratman, Israel, Pollack CI'88]

Means-End
Reasoner

options

Intentions
structured
into Plans

—

Action

Opportunity
Analyzer

Filtering Process

Compatibility
Filter

Filter
Override
Mechanism

Beliefs

)

surviving
options.

Desires

Deliberation
Process

intentions

Perception

Fic. 1. An architecture for resource-bounded agents.
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Detailed BDI Architecture

Pending Events

RN )

: I I
Q | !
£ ; ;
c | |
o : Plan :
S ‘ library |
c | . |
w ! E E BDI engine er P41 ||
~ b €n:thn+dn ||
' | Intention Stacks ;
ACTUATGRE ™™™ 777777 actions
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Detailed BDI Architecture

SENSORS .
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Detailed BDI Architecture

Cor
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BDI Programming

Environment

ACTUATORS

__________________ goals/desires

Learning to Select Plans Intention Selection

Detailed BDI Architecture

to resolve

information | __ A4\
about the world

Conclusions

Y

Beliefs

recipes for
handling

goals-events

Intention Stacks

E : @/BD. n
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Detailed BDI Architecture

Environment
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Detailed BDI Architecture
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Detailed BDI Architecture

NVAVAYY

events

about the world

c partially
“E’ uninstantiated
c programs with
o commitment
S
(= |
w :
Intent{
ACTUATORS 77T
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recipes for
handling
goals-events

Rational behavior arises due
to the agent committing
to some of its desires, and
selecting actions that achieve
its intentions given its beliefs.
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The BDI Execution Cycle [Rao&Georgeff 92]
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The BDI Execution Cycle [Rao&Georgeff 92]
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The BDI Execution Cycle [Rao&Georgeff 92]
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The BDI Execution Cycle [Rao&Georgeff 92]

p——————
: Plan

Belief

(gets) Foe

~
~
~

E RENY ] 61:¢1<—51
Select plan ]“ i :

based on situation

€n : Yn < On
- @ @@

N
\

Step on
some
intention

—HEE

Current Intentions

Sebastian Sardina, Intention and Plan Selection for BDI Agent Systems. GR’16 - July 9, 2016 12/35



BDI Programming Learning to Select Plans Intention Selection Conclusions

The BDI Execution Cycle [Rao&Georgeff 92]
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The BDI Execution Cycle [Rao&Georgeff 92]

)
: Plan
Belief
\ query ¢ library

~

~
~

RENY ] 61:¢1<—51
Select plan ]“ i :

based on situation

€n : Yn < On LV

\0. ‘ -
Q.. push o
8.
S

Action & e e @
some
w Current Intentions

Sebastian Sardina, Intention and Plan Selection for BDI Agent Systems. GR’16 - July 9, 2016 12/35



BDI Programming Learning to Select Plans Intention Selection Conclusions

Some BDI Agent-oriented Programming Languages

Some BDI programming language systems/platforms/architectures:

PRS & dMars

3APL http://www.cs.uu.nl/3apl/
GOAL http://ii.tudelft.nl/trac/goal/
2APL http://apapl.sourceforge.net/
JASON http://jason.sourceforge.net/wp/
B JADEX http://sourceforge.net/projects/jadex/
SPARK http://www.ai.sri.com/~spark/
H JACK http://aosgrp.com/products/jack/
B SARL http://www.sarl.io/

Sebastian Sardina, Intention and Plan Selection for BDI Agent Systems. GR’16 - July 9, 2016 13/35


http://www.cs.uu.nl/3apl/
http://ii.tudelft.nl/trac/goal/
http://apapl.sourceforge.net/
http://jason.sourceforge.net/wp/
http://sourceforge.net/projects/jadex/
http://www.ai.sri.com/~spark/
http://aosgrp.com/products/jack/
http://www.sarl.io/

BDI Programming Learning to Select Plans Intention Selection Conclusions

Defining Agents in JACK: Player.agent
Base class: aos. jack. jak.agent.Agent
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Prometheus Design Tool (PDT)
Design: of an agent system in 3 interrelated phases.
Code generation: skeleton code in JACK agent language.

Elo £t Waugere Search Eroject POTMenu B Window Hep

Conclusions

sor2
@ vecowe
1 POTCLMACORE

@Rl

www.cs.rmit.edu.au/agents/pdt/
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Possibility of Many Options

BDI execution = delayed context subgoal expansion + failure recovery
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BDI execution = delayed context subgoal expansion + failure recovery

subgoals
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Possibility of Many Options

BDI execution = delayed context subgoal expansion + failure recovery

BDI Programming

Implicit Goal-based Programming
+
Rational Online Executor

|
/ %H]
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From David’s talk: Better future performance

Avoid dead-ends with respect to current goals.
Avoid states to jeopardize goal achievement in future.

Take actions to maximize actions and goal in the future.

... or something on these lines. :-)
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Two Core Deliberation Tasks

Standard Rational Executor/Reasoner

select pending event-goals to handle (deliberation and filtering).
select a plan to handle goal & commit to it (means-end reas.).

select intention and execute part of it (execution).
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Two Core Deliberation Tasks

Standard Rational Executor/Reasoner

select a plan to handle goal & commit to it (means-end reas.).

select intention and execute part of it (execution).

Standard approaches:
o Let the BDI user program both selections

e meta-reasoning plans, deliberation cycle programming,
preferences.

e Select from several built-in schemes.
e random, top-down, round-robin, FIFO.

e Select based on additional domain information.
o priorities, deadlines, reward and cost, etc.
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Towards Better Plan & Intention Selection
Smarter plan & intention selection under 3 constraints:
e Domain-independent: no extra domain information required.
e No major overhead on BDI executor.
e Easily incorporated into existing BDI platforms.

General approach
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Towards Better Plan & Intention Selection
Smarter plan & intention selection under 3 constraints:
e Domain-independent: no extra domain information required.
e No major overhead on BDI executor.
e Easily incorporated into existing BDI platforms.

General approach

Plan Selection: Prefer plans that have succeeded in similar situations.
Learn/improve plans’ context conditions.

Induce decision trees for plans’ based on executions.
Rely on WEKA package.

[AAMAS’10, JRAS’10, IJCAI'11]
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Towards Better Plan & Intention Selection
Smarter plan & intention selection under 3 constraints:
e Domain-independent: no extra domain information required.
e No major overhead on BDI executor.
e Easily incorporated into existing BDI platforms.

General approach

Plan Selection: Prefer plans that have succeeded in similar situations.
Learn/improve plans’ context conditions.

Induce decision trees for plans’ based on executions.
Rely on WEKA package.

[AAMAS’10, JRAS’10, IJCAI'11]

Intention Selection: Prefer most “vulnerable” applicable intention.
e How much know-how is available for a goal-event?
e Reason on plan/goal coverage using model counting.
e [AAMAS’12, AAMAS’'14, JAAMAS’15]

J
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The BDI Execution Cycle [Rao&Georgeff 92]
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Recap. Plan Selection

e Problem: Context conditions hard to craft & environment changes.
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e Approach: Attach decision tress to plans + confidence measure.
e Easy to incorporate by using learning packages (eg., WEKA)

Select plan . . .
probabﬁistica”y Plan Selection relative to confidence level:
Execute and e Plan success rate (as per DT).
record outcome -

e Plan Stability.
Update plan’s o World novelty rate.

decision tree
e Empirical Evaluation: agent learns to succeed & adapts

e Synthetic programs of various shapes [AAMAS’10]
e Hanoi Tower [JRAS'10]
e Battery Controller [IJCAI'11]
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A Battery Storage Application [IJCAI'11]
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Given net building demand, calculate an appropriate battery response
in order to maintain grid power consumption within range [0, py].
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Experiment: Partial Failure with Restoration
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Recovery from temporary module failures during [0, 20k], [20k, 40K]
episodes.
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Smarter plan & intention selection under 3 constraints:
e Domain-independent: no extra domain information required.
e No major overhead on BDI executor.
e Easily incorporated into existing BDI platforms.

General approach

Intention Selection: Prefer most “vulnerable” applicable intention.
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The BDI Execution Cycle [Rao&Georgeff 92]
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Intention Selection
How to choose which intention to progress next?

Issues intention interference + dynamic environment +
incomplete know-how

Objective maximize successfully executed intentions
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Issues intention interference + dynamic environment +
incomplete know-how
Objective maximize successfully executed intentions

Standard approaches:

Simple first-in-first-out (FIFO) and round-robin (RR)
Meta-level programming deliberation cycle, call-back hooks, etc.
Domain info priorities, deadlines, value, dependencies, etc.
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Intention Selection
How to choose which intention to progress next?

Issues intention interference + dynamic environment +
incomplete know-how

Objective maximize successfully executed intentions

Standard approaches:
Simple first-in-first-out (FIFO) and round-robin (RR)

Meta-level programming deliberation cycle, call-back hooks, etc.

Domain info priorities, deadlines, value, dependencies, etc.

intelligent, domain-independent intention selection
e improves intention success;
¢ improves focus of attention;
e low over-head;
e easy to implement.
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Low Coverage Prioritization [AAMAS’12]

m Opportunistically execute the most “vulnerable” intention

Intentions contain unresolved goals...
How much “know-how” is available?
Less know how, more vulnerable...
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4

Plan coverage = % states applicable
Goal coverage = % states with app. plans
Aggregated coverage = considers
know-how below hierarchy

Lower the coverage, more vulnerable
intention
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Experimental Results: Impact on Intention Success
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Coverage of Plans and Goals
Coverage of a plan = % of states where plan is applicable
Coverage of a goal = % of states with plans available

Overlap of plans = plans applicable simultaneously
Aggregated coverage = know-how below hierarchy + overlap

0.59375 = 0.5 x 0.4375 + 0.5 x 0.75

05 075 0.75 0.25 0.25
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Enablement Contribution
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Major component is goal enablement checking!
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Enablement Addition to FIFO and RR on Hanoi

= FIFO——FIFO° ~ RR—RR°
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Enablement Addition to FIFO and RR on Hanoi Il

= FIFO——FIFO* - RR——RR°
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Summary

¢ Intention & Plan selection at the core of BDI “intelligence”
e ... but almost not addressed (in domain-independent way)!
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¢ Proposed learning-based plan selection:
e Attach a decision tree as a “learnt” context-condition.

e Use of confidence measure to balance exploit/explore.
e Experimental Results:

e Converges to optimal
e Adapts to changes.
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e Attach a decision tree as a “learnt” context-condition.

e Use of confidence measure to balance exploit/explore.
e Experimental Results:

e Converges to optimal
e Adapts to changes.

e Proposed low-coverage prioritization:
e Pick most “know-how vulnerable” intention: via coverage
o Experimental Results:
Increases the success rate (almost always).
Better in low-coverage + highly dynamic situations.
Improves RR significantly with little loss on fairness.
Improves efficiency & decreases failure recovery.
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Summary

¢ Intention & Plan selection at the core of BDI “intelligence”
e ... but almost not addressed (in domain-independent way)!

¢ Proposed learning-based plan selection:
e Attach a decision tree as a “learnt” context-condition.

e Use of confidence measure to balance exploit/explore.
e Experimental Results:

e Converges to optimal
e Adapts to changes.

e Proposed low-coverage prioritization:
e Pick most “know-how vulnerable” intention: via coverage
o Experimental Results:

Increases the success rate (almost always).

e Better in low-coverage + highly dynamic situations.

e Improves RR significantly with little loss on fairness.

e Improves efficiency & decreases failure recovery.

e Both approaches domain-independent & implementable.
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Challenges?
Need more advanced built-in infrastructure support for goal reasoning:

domain-independent;

automatic;

not based on new programming constructs;
based on knowledge representation & learning!
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Challenges?
Need more advanced built-in infrastructure support for goal reasoning:

domain-independent;
automatic; »
not based on new programming constructs; v /
based on knowledge representation & learning!

Promising challenges:
Plan & intention selection: key places of deliberation!

Goals and plan integration: representation & reasoning
Goal conflict & synergies.
Goal generation/creation: basic motivations/desires?

Verification & debugging techniques/tools.
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Thank you for your attention!

... and thanks to those who contributed to this work:

Lin Padgham ;5 Tangarajah Dhirendra Singh Max Waters
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A Dynamic Confidence Measure

P Observe & record on averaging window n:
¢ rate of plan success.
e plan local stability: success rate > €?

e plan global stability: ratio of stable plans
below in the goal-tree.

Pa] [Po] [Pel[Pa][Pe)
x JooX X

e rate of new worlds seen.
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A Dynamic Confidence Measure

P Observe & record on averaging window n:
e rate of plan success.
e plan local stability: success rate > €?

e plan global stability: ratio of stable plans
below in the goal-tree.

e rate of new worlds seen.

[Pa] [Ps] [Pe][Pa]]Ps]

X \/ | v X X

Confidence Measure for Plans
o Stability measure Cs(P, w, n):

¢ how well-informed the last n executions of plan P in world w were?

e World metric Cy (P, n):
e how much we have seen the “interesting” worlds for P?

e Aggregated confidence measure C(P, w, n):
W C(P,w,n) =aCs(P,w,n) + (1 —a)Cuw(P,n)
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Example: Dynamic Confidence Measure

Pa [Po] [Pe] [ Po] [Pe]
X/ X oxo/

Confidence
o
(6)]
T
|

After E=15, P, starts to fail. 0 | x 1 1 | 1
The confidence drops, 0 5 10 15 20 25
promoting new exploration Executions

and re-learning. —ea=05n=5
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Plan Selection via Plan Weighting

Given P’s confidence measure C(P, w, n) & DT estimation P(P, w):

Plan Weight
Using predicted likelihood of success & confidence measure:

Q(P,w,n) =05+ [C(P,w,n) x (P(P,w) —0.5)],

e When C(P,w, n) =1, then Q(P,w, n) = P(P,w)
e When C(P,w,n) =0, then Q(P, w, n) = .5 (default weight)

=]DINHETNETEICile]gl probabilistically+proportionally to plans’ weights.
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